Skip to main content
Log in

Restriction data from chloroplast DNA for phylogenetic reconstruction: Is there only one accurate way of scoring?

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Information from the same restriction analysis of chloroplast DNA of 33 taxa ofRubiaceae was scored in four different ways, two of which were based on fragments, and two on restriction sites, and they were subsequently analysed with Wagner parsimony. The methods resulted in different phylogenetic trees. The inherent differences between the methods relate to the amount of non-homologous characters and dependent characters, but none of the methods will systematically bias the resulting cladograms. The fragment analyses are much less time-consuming, but probably less accurate, than the site analyses. The choice of method is dependent on a trade-off between accuracy and resources (time). One important recommendation is made: all phylogenetic analyses of chloroplast DNA data should be accompanied by a data matrix and contain information on how the matrix was compiled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archie, J. W., 1989: Homoplasy excess ratios: new indices for measuring levels of homoplasy in phylogenetic systematics and a critique of the consistency index. — Syst. Zool.38: 253–269.

    Google Scholar 

  • Albert, V. A., Mishler, B. D., Chase, M. W., 1991: Character-state weighting for restriction site data in phylogenetic reconstruction, with an example from chloroplast DNA. — InSoltis, D., Soltis, P., Doyle, J., (Eds.): Plant molecular systematics. — New York: Chapman & Hall (in press).

    Google Scholar 

  • Berthou, T., Matthieu, C., Vedel, F., 1983: Chloroplast and mitochondrial DNA variation as indicator of phylogenetic relationships in the genusCoffea L. — Theoret. Appl. Genet.65: 77–84.

    Google Scholar 

  • Bremer, B., Jansen, R. K., 1991: Comparative restriction site mapping of chloroplast DNA implies new phylogenetic relationships withinRubiaceae. — Amer. J. Bot. (in press).

  • Clegg, M. T., Brown, A. H. D., Whitfeld, P. R., 1984: Chloroplast DNA diversity in wild and cultivated barley: implication for genetic conservation. — Genet. Res.43: 339–343.

    Google Scholar 

  • Coates, D., Cullis, C. A., 1987: Chloroplast DNA variability amongLinum species. — Amer. J. Bot.74: 260–268.

    Google Scholar 

  • Debry, R. W., Slade, N. A., 1985: Cladistic analysis of restriction endonuclease cleavage maps within a maximum-likelihood framework. — Syst. Zool.34: 21–34.

    Google Scholar 

  • Erickson, L. R., Straus, N. A., Beversdorf, W. D., 1983: Restriction patterns reveal origins of chloroplast genomes inBrassica amphiploides. — Theoret. Appl. Genet.65: 201–206.

    Google Scholar 

  • Farris, J. S., 1977: Phylogenetic analysis under Dollo's law. — Syst. Zool.26: 77–88.

    Google Scholar 

  • , 1988: Hennig 86. Version 1.5 [computer software and manual]. — Port Jefferson Station, New York: (publ. by author).

    Google Scholar 

  • , 1989: The retention index and the rescaled consistency index. — Cladistics5: 417–419.

    Google Scholar 

  • Hantula, J., Uotila, P., Saura, A., Lokki, J., 1989: Chloroplast DNA variation inAnemone s. lato (Ranunculaceae). — Pl. Syst. Evol.163: 81–85.

    Google Scholar 

  • Hennig, W., 1966: Phylogenetic systematics. — Urban: University of Illinois Press.

    Google Scholar 

  • Hosaka, K., 1986: Who is the mother of the potato?—Restriction endonuclease analysis of chloroplast DNA of cultivated potatoes. — Theoret. Appl. Genet.72: 606–618.

    Google Scholar 

  • , 1984: Phylogenetic relationship between the tuberousSolanum species as revealed by restriction endonuclease analysis of chloroplast DNA. — J. Genet. (Japan)59: 349–369.

    Google Scholar 

  • Jansen, R. K., Palmer, J. D., 1987a: Chloroplast DNA from lettuce andBarnadesia (Asteraceae): structure, gene localization, and characterization of a large inversion. — Curr. Gent.11: 553–564.

    Google Scholar 

  • , 1987b: A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). — Proc. Natl. Acad. Sci. U.S.A.84: 5818–5822.

    Google Scholar 

  • -Holsinger, K. E., Michaels, H. J., Palmer, J. D., 1990: Phylogenetic analysis of chloroplast DNA restriction site data at higher taxonomic levels: an example from theAsteraceae. — Evolution (in press).

  • Kung, S. D., Zhu, Y. S., Chen, K., 1982:Nicotiana chloroplast genome. III. Chloroplast DNA evolution. — Theoret. Appl. Genet.61: 73–79.

    Google Scholar 

  • Lehväslaiho, H., Saura, A., Lokki, J., 1987: Chloroplast DNA variation in the grass tribeFestuceae. — Theoret. Appl. Genet.74: 298–302.

    Google Scholar 

  • Nei, M., Li, W. H., 1979: Mathematical model for studying genetic variation in terms of restriction endonucleases. — Proc. Natl. Acad. Sci. U.S.A.76: 5269–5273.

    PubMed  Google Scholar 

  • Ohyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z., Aota, S., Inokuchi, H., Ozeki, H., 1986: Chloroplast gene organization deduced from complete sequence of liverwortMarchantia polymorpha chloroplast DNA. — Nature322: 572–574.

    Google Scholar 

  • Palmer, J. D., 1985: Comparative organization of chloroplastomes. — Ann. Rev. Genet.19: 325–354.

    PubMed  Google Scholar 

  • , 1987: Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. — Amer. Naturalist130: S 6-S 29.

    Google Scholar 

  • , 1988: Chloroplast DNA variation and plant phylogeny. — Ann. Missouri Bot. Gard.75: 1180–1206.

    Google Scholar 

  • , 1985: Chloroplast DNA variation and evolution inPisum: patterns of change and phylogenetic analysis. — Genetics109: 195–213.

    Google Scholar 

  • , 1982: Chloroplast DNA evolution and phylogenetic relationships inLycopersicon. — Proc. Natl. Acad. Sci. U.S.A.79: 5006–5010.

    Google Scholar 

  • Perl-Treves, R., Galun, E., 1985: TheCucumis plastome: physical map, intrageneric variation and phylogenetic relationships. — Theoret. Appl. Genet.71: 417–429.

    Google Scholar 

  • Rieseberg, L. D., Soltis, D., Palmer, J. D., 1988: A molecular reexamination of introgression betweenHelianthus annus andH. bolanderi (Compositae). — Evolution42: 227–238.

    Google Scholar 

  • Rose, R. J., Schlarbaum, S. E., Small, E., Johnson, L. B., 1988: Chloroplast genomic variation and phylogeny inMedicago sectionIntertextae. — Canad. J. Bot.66: 1352–1358.

    Google Scholar 

  • Sanderson, M. J., Donoghue, M. J., 1989: Patterns of variation in levels of homoplasy. — Evolution43: 1781–1795.

    Google Scholar 

  • Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Yamaguchi-Shinozaki, K., Ohto, C., Torazawa, K., Meng, B. Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimada, H., Sugiura, M., 1986: The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. — EMBO J.5: 2043–2049.

    Google Scholar 

  • Smith, R. L., Sytsma, K. J., 1990: Evolution ofPopulus nigra (sect.Aigeiros): introgressive hybridization and the chloroplast contribution ofPopulus alba (sect.Populus). — Amer. J. Bot.77: 1176–1187.

    Google Scholar 

  • Soltis, D. E., Soltis, P. S., Ness, B. D., 1989: Chloroplast-DNA variation and multiple origins of autopolyploidy inHeuchera micrantha (Saxifragaceae). — Evolution43: 650–656.

    Google Scholar 

  • Soreng, R. J., Davis, J. I., Doyle, J. J., 1990: A phylogenetic analysis of chloroplast DNA restriction site variation inPoaceae subfamilyPooideae. — Pl. Syst. Evol.172: 83–97.

    Google Scholar 

  • Swofford, D. L., 1989: PAUP, Phylogenetic analysis using parsimony. Version 3.0 [computer software and manual]. — Champaign, Illinois: Illinois Natural History Survey.

    Google Scholar 

  • Sytsma, K. J., Gottlieb, L. D., 1986a: Chloroplast DNA evidence for the derivation of the genusHeterogaura fromClarkia (Onagraceae). — Proc. Natl. Acad. Sci. U.S.A.83: 5554–5557.

    Google Scholar 

  • , 1986b: Chloroplast DNA evolution and phylogenetic relationships inClarkia sect.Peripetasma (Onagraceae). — Evolution40: 1248–1262.

    Google Scholar 

  • , 1985: Phylogenetics of theLisianthus skinneri (Gentianaceae) species complex in Panama using DNA restriction fragment analysis. — Evolution39: 594–608.

    Google Scholar 

  • , 1988: DNA and morphology: comparisons in theOnagraceae. — Ann. Missouri Bot. Gard.75: 1217–1237.

    Google Scholar 

  • , 1990: Phylogenetics inClarkia (Onagraceae): restriction site mapping of chloroplast DNA. — Syst. Bot.15: 280–295.

    Google Scholar 

  • Templeton, A. R., 1983: Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. — Evolution37: 221–244.

    Google Scholar 

  • Waugh, R., van de Ven, G. T. W., Phillips, M. S., Powell, W., 1990: Chloroplast DNA diversity in the genusRubus (Rosaceae) revealed by Southern hybridization. — Pl. Syst. Evol.172: 65–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bremer, B. Restriction data from chloroplast DNA for phylogenetic reconstruction: Is there only one accurate way of scoring?. Pl Syst Evol 175, 39–54 (1991). https://doi.org/10.1007/BF00942144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00942144

Key words

Navigation