Skip to main content
Log in

Biosystematics of two sympatric species ofEucharis (Amaryllidaceae)

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Eucharis candida andE. formosa are two often sympatric species of bulbous geophytes restricted to neotropical rain forest understory. The species are most common in eastern Ecuador, and are the only two east Ecuadorean species of the genus found north of the Pastaza valley. Data from phenetic, karyotypic, and preliminary isozyme electrophoretic analyses of both species are represented. The species are distinguishable phenetically and karyologically, but isozyme-based relationships are more complex. Phenetic resolution of the isozyme phenotypes supports recognition of two species in Ecuador. A Peruvian isolate ofE. formosa, though not morphologically distinct, shows both allozyme and chromosomal divergence from Ecuadorean populations. Cladistic relationships based on overall allozyme data do not support species distinction, but a novel electrophoretic phenotype for glutathione reductase is shared only by individuals ofE. candida. An apparent geographic component within the monophyletic groups resolved in the cladogram suggests that some degree of gene flow between these two species has been maintained without the complete loss of morpholgoical species identity. This may have been mediated either by artificial population structures due to a probable long history of cultivation, or via Pleistocene refugia effects. Both species may have originated in eastern Ecuador from a common ancestral population which has since radiated outward, perhaps several times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M. P., 1969: Differential staining of aborted and non-aborted pollen. — Stain Technol.44: 177–122.

    Google Scholar 

  • Ashton, P. S., G. Yik-Yuen, F. W., Robertson, 1984: Electrophoretic and morphological comparisons in ten rain forest species ofShorea (Dipterocarpaceae). — Bot. J. Linn. Soc.89: 293–304.

    Google Scholar 

  • Babbel, G. R., Selander, R. K., 1974: Genetic variability in edaphically restricted and widespread plant species. — Evolution28: 619–630.

    Google Scholar 

  • Battaglia, E., 1955: Chromosome morphology and terminology. — Caryologia8: 178–197.

    Google Scholar 

  • Chou, C.-H., Hwang, Y.-H., Hwang, S.-Y., 1986: A biochemical aspect of phylogenetic study ofBambusaceae in Taiwan. 4. The generaArundinaria, Pseudosasa, Semiarundinaria, Shibataea, Sinobambusa, andYushania. — Bot. Bull. Academia Sinica27: 117–131.

    Google Scholar 

  • Cormack, R. M., 1971: A review of classification. — J. Royal Statist. Soc. A.134: 321–367.

    Google Scholar 

  • Crawford, D. J., 1983: Phylogenetic and systematic inferences from electrophoretic studies. — InTanksley, S. D., Orton, T. J., (Eds.): Isozymes in plant genetics and breeding A, pp. 257–287. — Amsterdam: Elsevier.

    Google Scholar 

  • Farris, J. S., 1970: Methods for computing Wagner trees. — Syst. Zool.19: 83–92.

    Google Scholar 

  • Gottlieb L. D., 1981: Electrophoretic evidence and plant populations. — InReinhold, L., Harborne, J., Swain, T., (Eds.): Progress in phytochemistry7: 46. — New York: Pergamon Press.

    Google Scholar 

  • —, 1982: Conservation and duplication of isozymes in plants. — Science216: 373–379.

    Google Scholar 

  • —, 1984: InGrant, W. F., (Ed.): Plant biosystematics, pp. 242–257. — Orlando, FL: Academic Press.

    Google Scholar 

  • Hames, B. D., Rickwood, D., 1981: Gel electrophoresis of proteins. A practical approach. — Oxford: IRL Press.

    Google Scholar 

  • Hamrick, J. L., Loveless, M. D., 1986: Isozyme variation in tropical trees: procedures and prelininary results. — Biotropica18: 201–207.

    Google Scholar 

  • Hendy, M. D., Penny, D., 1982: Branch and bound algorithms to determine minimal evolutionary trees. — Math. Biosc.59: 277–290.

    Google Scholar 

  • Heywood, J. S., Fleming, T. H., 1986: Patterns of allozyme variation in three Costa Rica species ofPiper. — Biotropica18: 208–213.

    Google Scholar 

  • Janzen, D. H., 1971: Euglossine bees as long-distance pollinators of tropical plants. — Science171: 203–205.

    Google Scholar 

  • Kaplan, J. C., 1968: Electrophoretic study of glutathione reductase in human erythrocytes and leucocytes. — Science217: 256–258.

    Google Scholar 

  • Kirkpatrick, K. J., Decker, D. S., Wilson, H. D., 1985: Allozyme differentiation in theCucurbita pepo complex:C. pepo var.medullosa vs.C. texana. — Econ. Bot.39: 289–299.

    Google Scholar 

  • Kluge, G., Farris, J. S., 1969: Quantitative phyletics and the evolution of anurans. — Syst. Zool.18: 1–32.

    Google Scholar 

  • Lewis, W. H., 1986: The Jivaro Indians: notes on an expedition. — Discovery17: 2–6.

    Google Scholar 

  • Meerow, A. W., 1987a: Biosystematics of tetraploidEucharis (Amaryllidaceae). — Ann. Missouri Bot. Gard.74: 291–309.

    Google Scholar 

  • —, 1987b: Chromosome cytology ofEucharis, Caliphruria andUrceolina (Amaryllidaceae). — Amer. J. Bot.74: 1560–1576.

    Google Scholar 

  • —, 1989: Systematic of the Amazon lilies,Eucharis andCaliphruria. — Ann. Missouri Bot. Gard.75: 136–220.

    Google Scholar 

  • Nei, M., 1978: Estimation of average heterozygosity and genetic distance from a small number of individuals. — Genetics89: 583–590.

    Google Scholar 

  • Prance, G. T., 1982a: A review of the phytogeographic evidences for Pleistocene climate changes in the Neotropics. — Ann. Missouri Bot. Gard.69: 594–624.

    Google Scholar 

  • —, 1982b, (Ed.): Biological diversity in the tropics. — New York: Columbia University Press.

    Google Scholar 

  • Schlarbaum, S. E., Tsuchiya, T., 1984: Cytotaxonomy and phylogeny in certain species ofTaxodiaceae. — Pl. Syst. Evol.147: 29–54.

    Google Scholar 

  • Shaw, C. R., Prasad, R., 1970: Starch gel electrophoresis of enzymes — a compilation of recipes. — Biochem. Genet.4: 297–320.

    PubMed  Google Scholar 

  • Shields, C. R., Orton, T. J., Stuber, C. W., 1983: An outline of general resource needs and procedures for the electophoretic separation of active enzymes from plant tissue. — InTanksley, S. D., Orton, T. J., (Eds.): Isozymes in plant genetics and breeding A, pp. 443–468. — Amsterdam: Elsevier.

    Google Scholar 

  • Sneath, P. H. A., Sokal, R. R., 1973: Numerical taxonomy. — San Francisco: W. H. Freeman.

    Google Scholar 

  • Storey, W. B., Mann, J. D., 1967: Chromosome contraction by o-isopropyl-N-phenyl-carbamate (IPC). — Stain Technol.42: 15–18.

    PubMed  Google Scholar 

  • Sytsma, K. J., Schaal, B. A., 1985: Genetic variation, differentiation, and evolution in a species complex of tropical shrubs based on isozymic data. — Evolution39: 582–593.

    Google Scholar 

  • Tjio, J. H., Hagberg, A., 1951: Cytological studies on some X-ray mutants of barley. — An. Estac. Exp. Aula Dei2: 149–167.

    Google Scholar 

  • Torres, A. M., Hart, G. E., Mau-Lastovicka, T., 1982: Citrus isozymes. — J. Heredity73: 335–339.

    Google Scholar 

  • Vallejos, C. E., 1983: Enzyme staining activity. — InTanksley, S. D., Orton, T. J., (Eds.): Isozymes in plant genetics and breeding A, pp. 469–516. — Amsterdam: Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meerow, A.W. Biosystematics of two sympatric species ofEucharis (Amaryllidaceae). Pl Syst Evol 166, 11–30 (1989). https://doi.org/10.1007/BF00937872

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00937872

Key words

Navigation