Skip to main content
Log in

Ribosomal RNA sequences for inferring phylogeny within the grass family (Poaceae)

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

We have isolated RNA from nine different grass species and fromPsilotum, a modern representative of a primitive land plant lineage. By direct RNA sequencing with reverse transcriptase, we have determined the nucleotide sequence for five regions of the 18 S rRNA molecule and three regions of the 26 S rRNA molecule. Over 1 600 positions have been elucidated for each plant species. These sequences were aligned by computer and the variable positions were identified by inspection. The data from the variable positions were input into phylogenetic inference computer programs to generate an evolutionary relationship among the grass species. This evolutionary tree based on nucleotide sequence data was compared to a recent classification of thePoaceae based on morphological data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnheim, N., 1983: Concerted evolution of multigene families. — InNei, M., Koehn, R. K., (Eds.): Evolution of genes and proteins, pp. 38–61. — Sunderland, Mass.: Sinauer Associates, Inc.

    Google Scholar 

  • Beaucage, S. L., Caruthers, M. H., 1981: Deoxynucleoside phosphoramidites — a new class of key intermediates for deoxypolynucleotide synthesis. — Tetrahedron Letters22: 1859–1862.

    Google Scholar 

  • Cashmore, A. R., 1982: The isolation of poly A + messenger RNA from higher plants. — InEdelman, M., Hallick, R. B., Chua, N. H., (Eds.): Methods in chloroplast molecular biology, pp. 387–392. — Amsterdam, New York: Elsevier Biomedical Press.

    Google Scholar 

  • Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., Rutter, W. J., 1979: Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. — Biochem.18: 5294–5299.

    Google Scholar 

  • DeBorde, D. C., Naeve, C. W., Herlocher, M. L., Maasab, H. F., 1986: Resolution of a common RNA sequencing ambiguity by terminal deoxynucleotidyl transferase. — Anal. Biochem.157: 275–282.

    Google Scholar 

  • Devereux, J., Haeberli, P., Smithies, O., 1984: A comprehensive set of sequence analysis programs for the VAX. — Nucleic Acids Res.12: 387–395.

    Google Scholar 

  • Eckenrode, V., Arnold, J., Meagher, R., 1985: Comparison of the nucleotide sequence of soybean 18 S rRNA with the sequences of other small-subunit rRNAs. — J. Mol. Evol.21: 259–269.

    Google Scholar 

  • Glisin, V., Crkvenjakov, R., Byus, C., 1974: Ribonucleic acid isolated by cesium chloride centrifugation. — Biochem.13: 2633–2637.

    Google Scholar 

  • Gonzalez, I., Gorski, J., Campen, T., Dorney, D., Erickson, J., Sylvester, J., Schmickel, R., 1985: Variation among human 28 S ribosomal RNA genes. — Proc. Natl. Acad. Sci. U.S.A.82: 7666–7670.

    Google Scholar 

  • Hall, T. C., Ma, Y., Buchbinder, B. U., Pyne, J. W., Sun, S. M., Bliss, F. A., 1978: Messenger RNA for G 1 protein of French Bean seeds: cell-free translation and product characterization. — Proc. Natl. Acad. Sci. U.S.A.75: 3196–3200.

    Google Scholar 

  • Hassouna, N., Michot, B., Bachellerie, J.-P., 1984: The complete nucleotide sequence of mouse 28 S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. — Nucleic Acids Res.12: 3563–3583.

    Google Scholar 

  • Hori, H., Lim, B.-L., Osawa, S., 1985: Evolution of green plants as deduced from 5S rRNA sequences. — Proc. Natl. Acad. Sci. U.S.A.82: 820–823.

    Google Scholar 

  • Jupe, E. R., Chapman, R. L., Zimmer, E. A., 1988: Nuclear ribosomal RNA genes and algal phylogeny — theChlamydomonas example. — BioSys. (in press)

  • Matteucci, M. D., Caruthers, M. H., 1981: Synthesis of deoxyoligonucleotides on a polymer support. — J. Amer. Chem. Soc.103: 3185–3191.

    Google Scholar 

  • Palmer, J. D., 1987: Chloroplast-DNA evolution and biosystematic uses of chloroplast-DNA variation. — Amer. Naturalist130: 6–29.

    Google Scholar 

  • Qu, L. H., Michot, B., Bachellerie, J.-P., 1983: Improved methods for structure probing in large RNAs: A rapid “heterologous” sequencing approach is coupled to the direct mapping of nuclease accessible sites. — Nucleic Acids Res.11: 5903–5920.

    Google Scholar 

  • Ritland, K., Clegg, M., 1987: Evolutionary analysis of plant DNA sequences. — Amer. Naturalist130: 74–100.

    Google Scholar 

  • Sederoff, R., 1987: Molecular mechanisms of mitochondrial-genome evolution in higher plants. — Amer. Naturalist130: 30–45.

    Google Scholar 

  • Stephens, J. C., Nei, M., 1985: Phylogenetic analysis of polymorphic DNA sequences at theAdh locus inDrosophila melanogaster and its sibling species. — J. Mol. Evol.22: 289–300.

    Google Scholar 

  • Swofford, D. L., 1985: PAUP user's manual. Version 2.4. — Champaign, Illinois: Illinois Natural History Survey.

    Google Scholar 

  • Takaiwa, F., Oono, K., Sugiura, M., 1984: The complete nucleotide sequence of a rice 17 S rRNA gene. — Nucleic Acids Res.12: 5441–5448.

    Google Scholar 

  • —, —, 1985: The complete nucleotide sequence of a rice 25 S rRNA gene. — Gene37: 255–289.

    Google Scholar 

  • Watson, L., Clifford, H. T., Dallwitz, M. J., 1985: The classification ofPoaceae: Subfamilies and supertribes. — Austral. J. Bot.33: 433–484.

    Google Scholar 

  • Youvan, D., Hearst, J., 1981: A sequence fromDrosophila melanogaster 18 S rRNA bearing the conserved hyper-modified nucleoside am ψ: Analysis by reverse transcription and high-performance liquid chromatography. — Nucleic Acids Res.9: 1723–1741.

    Google Scholar 

  • Zimmer, E. A., Hamby, R. K., 1988: Perspectives on the use of nucleic acids in plant systematics and evolutionary biology. — Ann. Missouri Bot. Gard. (in press).

  • - -Issel, L. E., Sims, L. E., 1988: Ribosomal RNA sequences identify the gymnosperm groups that gave rise to flowering plants. — Ms. in preparation to be submitted to Science.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Approved by the Director of the Louisiana Agricultural Experiment Station as manuscript 87-12-1547.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamby, R.K., Zimmer, E.A. Ribosomal RNA sequences for inferring phylogeny within the grass family (Poaceae). Pl Syst Evol 160, 29–37 (1988). https://doi.org/10.1007/BF00936707

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00936707

Key words

Navigation