Parasitology Research

, Volume 79, Issue 8, pp 649–659 | Cite as

Biochemical and functional characterization of histone H1-like proteins in procyclicTrypanosoma brucei brucei

  • Markus Burri
  • Wolfram Schlimme
  • Bruno Betschart
  • Urs Kämpfer
  • Johann Schaller
  • Hermann Hecker
Original Investigations


Four variants and/or posttranslational modifications of histone H1-like proteins ofTrypanosoma brucei brucei procyclic culture forms were extracted with 0.25N HCl from isolated nuclei and analyzed by two-dimensional gel electrophoresis. The amino acid composition of these proteins, their ability to space nucleosomes regularly and to induce salt-dependent condensation of the chromatin indicated their histone H1 nature. On the other hand, the histone H1-like proteins clearly differed from their higher-eukaryote counterparts by their weak interaction with DNA under low-salt conditions. As a consequence, intact nucleosome filaments were prepared according to a new preparation protocol especially adapted to the unstable chromatin ofT. b. brucei. Our results indicate that the biochemical properties of the histone H1-like proteins contribute to the structural and functional differences between the chromatin of procyclicT. b. brucei and that of higher eukaryotes.


Acid Composition Amino Acid Composition Weak Interaction Biochemical Property Functional Characterization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfageme CR, Zweidler A, Mahowald A, Cohen LH (1974) Histones ofDrosophila embryos. J Biol Chem 249:3729–3736PubMedGoogle Scholar
  2. Allan J, Harbone N, Rau DC, Gould H (1982) Participation of core histone tails in the stabilisation of the chromatin solenoid. J Cell Biol 93:285–297PubMedGoogle Scholar
  3. Ausio J, Dong F, Holde K van (1989) Use of selectively trypsinized nucleosome core particles to analyze the role of the histone “tails” in the stabilization of the nucleosome. J Mol Biol 206:451–463PubMedGoogle Scholar
  4. Bender K, Betschart B, Schaller J, Kämpfer U, Hecker H (1992a) Biochemical properties of histone-like proteins of procyclicTrypanosoma brucei brucei. Acta Trop (Basel) 50:169–184Google Scholar
  5. Bender K, Betschart B, Schaller J, Kämpfer U, Hecker H (1992b) Sequence differences between histones of procyclicTrypanosoma brucei brucei and higher eukaryotes. Parasitology 105:97–104PubMedGoogle Scholar
  6. Bender K, Betschart B, Hecker H (1992c) Histone-DNA interactions in the chromatin of procyclicTrypanosoma brucei brucei. Parasitol Res 78:495–500PubMedGoogle Scholar
  7. Bender K, Betschart B, Marion C, Michalon P, Hecker H (1992d) Structural differences between the chromatin of procyclicTrypanosoma brucei brucei and higher eukaryotes as probed by immobilized trypsin. Acta Trop (Basel) 52:69–78Google Scholar
  8. Bidlingmayer A, Cohen SA, Tarvin TL (1984) Rapid analysis of amino acids using pre-column derivatization. J Chromatogr 336:93–104PubMedGoogle Scholar
  9. Brandt WF, Holt C von (1986) Amino acid composition and gasphase sequence analysis of proteins and peptides from glass fiber and nitrocellulose membrane electro-blots. In: Wittmann B, Salnakow J, Erdmann VA (eds) Advanced methods in protein microsequence analysis. Springer, Berlin Heidelberg New York, pp 161–178Google Scholar
  10. Brun R, Schönenberger M (1979) Cultivation and in vitro cloning of procyclic forms ofTrypanosoma brucei in semi-defined medium. Acta Trop (Basel) 36:289–292Google Scholar
  11. Caplan EB (1975) A very rapidly migrating f1 histone associated with gene-sized pieces of DNA in the macronucleus ofOxytricha sp. Biochim Biophys Acta 407:109–113PubMedGoogle Scholar
  12. Crane-Robinson C (1985) How does H1 function in chromatin? In: (eds) Chromosomal proteins and gene expression. Plenum, New York, pp 27–36Google Scholar
  13. Duschak VG, Cazzulo JJ (1990) The histones of the insect trypanosomatid,Crithidia fasciculata. Biochim Biophys Acta 1040:159–166PubMedGoogle Scholar
  14. Elpidina EN, Zaitseva GN, Krasheninnikov JA (1979) Histones fromTrypanosoma lewisi nuclei. Biokhimiya 44:1830–1841Google Scholar
  15. Felsenfeld G (1992) Chromatin: an essential part of the transcriptional apparatus. Nature 355:219–224PubMedGoogle Scholar
  16. Goff CG (1976) Histones ofNeurospora crassa. J Biol Chem 251:4131–4138PubMedGoogle Scholar
  17. Gorovsky MA, Bowen Keevert J, Pleger GL (1974) Histone F1 ofTetrahymena macronuclei. J Cell Biol 61:134–145Google Scholar
  18. Grunstein M (1992) Histones as regulators of genes. Sci Am 267:68–74Google Scholar
  19. Gurley LR, Spall WD, Valdez JG, Jackson PS, Meyne J, Ray FA, Prentice DA, Blumenfeld M, (1990) HPLC of histones. In: Gouding M, Regnier FE (eds) HPLC of biological macromolecules. (Chromatographic science series, vol 51) Marcel Decker, Basel, pp 529–570Google Scholar
  20. Hecker H, Gander ES (1985) The compaction pattern of the chromatin of trypanosomes. Biol Cell 53:199–208PubMedGoogle Scholar
  21. Hecker H, Bender K, Betschart B, Modespacher UP (1989) Instability of the nuclear chromatin of procyclicTrypanosoma brucei brucei. Mol Biochem Parasitol 37:225–234PubMedGoogle Scholar
  22. Holde KE van (1989) Chromatin. In: Rich A (ed) (Molecular biology series) Springer, Berlin Heidelberg New York, pp 1–497Google Scholar
  23. Johns EW (1967) The electrophoresis of histones in polyacrylamide gel and their quantitative determination. Biochem J 104:78–82PubMedGoogle Scholar
  24. Panyim S, Chalkley R (1969) High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys 130:337–346PubMedGoogle Scholar
  25. Panyim S, Bilek D, Chalkley R (1971) An electrophoretic comparison of vertebrate histones. J Biol Chem 246:4206–4215PubMedGoogle Scholar
  26. Pastink A, Berkhaut JA, Mager WH, Planta RJ (1979) Analysis of the histones from the yeastSaccharomyces carlsbergensis. Biochem J 177:917–923PubMedGoogle Scholar
  27. Rubio J, Rosado Y, Castaneda M (1980) Subunit structure ofTrypanosoma cruzi chromatin. Can J Biochem 58:1247–1251PubMedGoogle Scholar
  28. Sambrook J, Maniatis PT, Fritsch EF (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  29. Sanders C (1977) A method for the fractionation of the high-mobility group of non-histone proteins. Biochem Biophys Res Commun 78:1034–1042PubMedGoogle Scholar
  30. Schaller J, Straub C, Kämpfer U, Rickli EE (1989) Complete amino acid sequence of canine miniplasminogen. Protein Seq Data Anal 2:445–450PubMedGoogle Scholar
  31. Schägger H, Jagow G von (1987) Tricine-sodium-dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379PubMedGoogle Scholar
  32. Schlimme W, Burri M, Bender K, Betschart B, Hecker H (1993)Trypanosoma brucei brucei: differences in the nuclear chromatin of blood stream forms and procyclic culture forms. Parasitology (in press)Google Scholar
  33. Shapiro SZ, Doxsey SJ (1982) Purification of nuclei from a flagellate protozoan,Trypanosoma brucei. Anal Biochem 127:112–115PubMedGoogle Scholar
  34. Shmatchenko VV, Varshavsky AJ (1978) A technique of low-pH gel electrophoresis of chromosomal proteins which does not require preliminary renoval of DNA. Anal Biochem 85:42–46PubMedGoogle Scholar
  35. Sogo JM, Ness PJ, Widmer RM, Parish RW, Koller T (1984) Psoralen cross-linking of DNA as a probe for the structure of active nucleolar chromatin. J Mol Biol 178:897–928PubMedGoogle Scholar
  36. Stein A, Bina M (1984) A model chromatin assembly system: factors affecting nucleosome spacing. J Mol Biol 178:341–363PubMedGoogle Scholar
  37. Thoma F, Koller T (1981) Unravelled nucleosomes, nucleosome beads and higher order structures of chromatin: influence of nonhistone components and histone H1. J Mol Biol 149:709–733PubMedGoogle Scholar
  38. Thoma F, Koller T, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and the salt-dependent superstructures of chromatin. J Cell Biol 83:403–427PubMedGoogle Scholar
  39. Thomas JO (1984) The higher order structure of chromatin and histone H1. J Cell Sci [Suppl]1:1–20Google Scholar
  40. Toro GC, Galanti N (1988) H1 histone and histone variants inTrypanosoma cruzi. Exp Cell Res 174:16–24PubMedGoogle Scholar
  41. Toro GC, Galanti N (1990)Trypanosoma cruzi histones. Further characterisation and comparison with higher eukaryotes. Biochem Int 21:481–490PubMedGoogle Scholar
  42. Toro CG, Galanti N, Hellman U, Wernstedt C (1993) Unambiguous identification of histone H1 inTrypanosoma cruzi. J Cell Biochem (in press)Google Scholar
  43. Vickerman K, Preston TM (1970) Spindle microtubules in the dividing nuclei of trypanosomes. J Cell Sci 6:365–383PubMedGoogle Scholar
  44. Widom J (1989) Toward a unified model of chromatin folding. Annu Rev Biophys Chem 18:365–395Google Scholar
  45. Wolffe AP (1990) New approaches to chromatin function. N Biologist 2:211–218Google Scholar
  46. Wolffe AP (1992) New insights into chromatin function in transcriptional control. FASEB J 6:3354–3361PubMedGoogle Scholar
  47. Zlatanova J (1990) Histone H1 and the regulation of transcription of eukaryotic genes. TIBS 15:273–276PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Markus Burri
    • 1
  • Wolfram Schlimme
    • 1
  • Bruno Betschart
    • 1
  • Urs Kämpfer
    • 2
  • Johann Schaller
    • 2
  • Hermann Hecker
    • 1
  1. 1.Swiss Tropical InstituteBaselSwitzerland
  2. 2.Institute of BiochemistryBerneSwitzerland

Personalised recommendations