Skip to main content
Log in

Biochemical and functional characterization of histone H1-like proteins in procyclicTrypanosoma brucei brucei

  • Original Investigations
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Four variants and/or posttranslational modifications of histone H1-like proteins ofTrypanosoma brucei brucei procyclic culture forms were extracted with 0.25N HCl from isolated nuclei and analyzed by two-dimensional gel electrophoresis. The amino acid composition of these proteins, their ability to space nucleosomes regularly and to induce salt-dependent condensation of the chromatin indicated their histone H1 nature. On the other hand, the histone H1-like proteins clearly differed from their higher-eukaryote counterparts by their weak interaction with DNA under low-salt conditions. As a consequence, intact nucleosome filaments were prepared according to a new preparation protocol especially adapted to the unstable chromatin ofT. b. brucei. Our results indicate that the biochemical properties of the histone H1-like proteins contribute to the structural and functional differences between the chromatin of procyclicT. b. brucei and that of higher eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfageme CR, Zweidler A, Mahowald A, Cohen LH (1974) Histones ofDrosophila embryos. J Biol Chem 249:3729–3736

    PubMed  Google Scholar 

  • Allan J, Harbone N, Rau DC, Gould H (1982) Participation of core histone tails in the stabilisation of the chromatin solenoid. J Cell Biol 93:285–297

    PubMed  Google Scholar 

  • Ausio J, Dong F, Holde K van (1989) Use of selectively trypsinized nucleosome core particles to analyze the role of the histone “tails” in the stabilization of the nucleosome. J Mol Biol 206:451–463

    PubMed  Google Scholar 

  • Bender K, Betschart B, Schaller J, Kämpfer U, Hecker H (1992a) Biochemical properties of histone-like proteins of procyclicTrypanosoma brucei brucei. Acta Trop (Basel) 50:169–184

    Google Scholar 

  • Bender K, Betschart B, Schaller J, Kämpfer U, Hecker H (1992b) Sequence differences between histones of procyclicTrypanosoma brucei brucei and higher eukaryotes. Parasitology 105:97–104

    PubMed  Google Scholar 

  • Bender K, Betschart B, Hecker H (1992c) Histone-DNA interactions in the chromatin of procyclicTrypanosoma brucei brucei. Parasitol Res 78:495–500

    PubMed  Google Scholar 

  • Bender K, Betschart B, Marion C, Michalon P, Hecker H (1992d) Structural differences between the chromatin of procyclicTrypanosoma brucei brucei and higher eukaryotes as probed by immobilized trypsin. Acta Trop (Basel) 52:69–78

    Google Scholar 

  • Bidlingmayer A, Cohen SA, Tarvin TL (1984) Rapid analysis of amino acids using pre-column derivatization. J Chromatogr 336:93–104

    PubMed  Google Scholar 

  • Brandt WF, Holt C von (1986) Amino acid composition and gasphase sequence analysis of proteins and peptides from glass fiber and nitrocellulose membrane electro-blots. In: Wittmann B, Salnakow J, Erdmann VA (eds) Advanced methods in protein microsequence analysis. Springer, Berlin Heidelberg New York, pp 161–178

    Google Scholar 

  • Brun R, Schönenberger M (1979) Cultivation and in vitro cloning of procyclic forms ofTrypanosoma brucei in semi-defined medium. Acta Trop (Basel) 36:289–292

    Google Scholar 

  • Caplan EB (1975) A very rapidly migrating f1 histone associated with gene-sized pieces of DNA in the macronucleus ofOxytricha sp. Biochim Biophys Acta 407:109–113

    PubMed  Google Scholar 

  • Crane-Robinson C (1985) How does H1 function in chromatin? In: (eds) Chromosomal proteins and gene expression. Plenum, New York, pp 27–36

    Google Scholar 

  • Duschak VG, Cazzulo JJ (1990) The histones of the insect trypanosomatid,Crithidia fasciculata. Biochim Biophys Acta 1040:159–166

    PubMed  Google Scholar 

  • Elpidina EN, Zaitseva GN, Krasheninnikov JA (1979) Histones fromTrypanosoma lewisi nuclei. Biokhimiya 44:1830–1841

    Google Scholar 

  • Felsenfeld G (1992) Chromatin: an essential part of the transcriptional apparatus. Nature 355:219–224

    PubMed  Google Scholar 

  • Goff CG (1976) Histones ofNeurospora crassa. J Biol Chem 251:4131–4138

    PubMed  Google Scholar 

  • Gorovsky MA, Bowen Keevert J, Pleger GL (1974) Histone F1 ofTetrahymena macronuclei. J Cell Biol 61:134–145

    Google Scholar 

  • Grunstein M (1992) Histones as regulators of genes. Sci Am 267:68–74

    Google Scholar 

  • Gurley LR, Spall WD, Valdez JG, Jackson PS, Meyne J, Ray FA, Prentice DA, Blumenfeld M, (1990) HPLC of histones. In: Gouding M, Regnier FE (eds) HPLC of biological macromolecules. (Chromatographic science series, vol 51) Marcel Decker, Basel, pp 529–570

    Google Scholar 

  • Hecker H, Gander ES (1985) The compaction pattern of the chromatin of trypanosomes. Biol Cell 53:199–208

    PubMed  Google Scholar 

  • Hecker H, Bender K, Betschart B, Modespacher UP (1989) Instability of the nuclear chromatin of procyclicTrypanosoma brucei brucei. Mol Biochem Parasitol 37:225–234

    PubMed  Google Scholar 

  • Holde KE van (1989) Chromatin. In: Rich A (ed) (Molecular biology series) Springer, Berlin Heidelberg New York, pp 1–497

    Google Scholar 

  • Johns EW (1967) The electrophoresis of histones in polyacrylamide gel and their quantitative determination. Biochem J 104:78–82

    PubMed  Google Scholar 

  • Panyim S, Chalkley R (1969) High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys 130:337–346

    PubMed  Google Scholar 

  • Panyim S, Bilek D, Chalkley R (1971) An electrophoretic comparison of vertebrate histones. J Biol Chem 246:4206–4215

    PubMed  Google Scholar 

  • Pastink A, Berkhaut JA, Mager WH, Planta RJ (1979) Analysis of the histones from the yeastSaccharomyces carlsbergensis. Biochem J 177:917–923

    PubMed  Google Scholar 

  • Rubio J, Rosado Y, Castaneda M (1980) Subunit structure ofTrypanosoma cruzi chromatin. Can J Biochem 58:1247–1251

    PubMed  Google Scholar 

  • Sambrook J, Maniatis PT, Fritsch EF (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sanders C (1977) A method for the fractionation of the high-mobility group of non-histone proteins. Biochem Biophys Res Commun 78:1034–1042

    PubMed  Google Scholar 

  • Schaller J, Straub C, Kämpfer U, Rickli EE (1989) Complete amino acid sequence of canine miniplasminogen. Protein Seq Data Anal 2:445–450

    PubMed  Google Scholar 

  • Schägger H, Jagow G von (1987) Tricine-sodium-dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    PubMed  Google Scholar 

  • Schlimme W, Burri M, Bender K, Betschart B, Hecker H (1993)Trypanosoma brucei brucei: differences in the nuclear chromatin of blood stream forms and procyclic culture forms. Parasitology (in press)

  • Shapiro SZ, Doxsey SJ (1982) Purification of nuclei from a flagellate protozoan,Trypanosoma brucei. Anal Biochem 127:112–115

    PubMed  Google Scholar 

  • Shmatchenko VV, Varshavsky AJ (1978) A technique of low-pH gel electrophoresis of chromosomal proteins which does not require preliminary renoval of DNA. Anal Biochem 85:42–46

    PubMed  Google Scholar 

  • Sogo JM, Ness PJ, Widmer RM, Parish RW, Koller T (1984) Psoralen cross-linking of DNA as a probe for the structure of active nucleolar chromatin. J Mol Biol 178:897–928

    PubMed  Google Scholar 

  • Stein A, Bina M (1984) A model chromatin assembly system: factors affecting nucleosome spacing. J Mol Biol 178:341–363

    PubMed  Google Scholar 

  • Thoma F, Koller T (1981) Unravelled nucleosomes, nucleosome beads and higher order structures of chromatin: influence of nonhistone components and histone H1. J Mol Biol 149:709–733

    PubMed  Google Scholar 

  • Thoma F, Koller T, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and the salt-dependent superstructures of chromatin. J Cell Biol 83:403–427

    PubMed  Google Scholar 

  • Thomas JO (1984) The higher order structure of chromatin and histone H1. J Cell Sci [Suppl]1:1–20

    Google Scholar 

  • Toro GC, Galanti N (1988) H1 histone and histone variants inTrypanosoma cruzi. Exp Cell Res 174:16–24

    PubMed  Google Scholar 

  • Toro GC, Galanti N (1990)Trypanosoma cruzi histones. Further characterisation and comparison with higher eukaryotes. Biochem Int 21:481–490

    PubMed  Google Scholar 

  • Toro CG, Galanti N, Hellman U, Wernstedt C (1993) Unambiguous identification of histone H1 inTrypanosoma cruzi. J Cell Biochem (in press)

  • Vickerman K, Preston TM (1970) Spindle microtubules in the dividing nuclei of trypanosomes. J Cell Sci 6:365–383

    PubMed  Google Scholar 

  • Widom J (1989) Toward a unified model of chromatin folding. Annu Rev Biophys Chem 18:365–395

    Google Scholar 

  • Wolffe AP (1990) New approaches to chromatin function. N Biologist 2:211–218

    Google Scholar 

  • Wolffe AP (1992) New insights into chromatin function in transcriptional control. FASEB J 6:3354–3361

    PubMed  Google Scholar 

  • Zlatanova J (1990) Histone H1 and the regulation of transcription of eukaryotic genes. TIBS 15:273–276

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burri, M., Schlimme, W., Betschart, B. et al. Biochemical and functional characterization of histone H1-like proteins in procyclicTrypanosoma brucei brucei . Parasitol Res 79, 649–659 (1993). https://doi.org/10.1007/BF00932507

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00932507

Keywords

Navigation