Skip to main content
Log in

Respiratory burst capacity of activated macrophages is resistant to depression by erythrocyte phagocytosis

  • Original Articles
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The present study evaluated whether macrophage activation would reduce the depression in the capacity of macrophages to produce H2O2 following EIgG phagocytosis. Macrophage activation was accomplished by exposing inflammatory rat peritoneal macrophages to 10 units of IFNγ for 72 h. IFNγ treatment caused a four to fivefold increase in phorbol myristate acetate (PMA)-triggered H2O2 production, but Fc receptor phagocytic function was unaltered. IFNγ-activated macrophages were able to phagocytize a greater number of EIgG before a decrease in PMAtriggered H2O2 production was observed and the level of H2O2 production did not fall below that of untreated-inflammatory macrophages that had not received an EIgG phagocytic challenge. The depression in Fc receptor phagocytic function was unaltered with macrophage activation. These results indicate that activated macrophages are resistant to the depression of respiratory burst capacity caused by erythrocyte phagocytosis and suggests that IFNγ treatment may be effective in preventing the impairment of host defense against bacterial infection that is associated with erythrocyte phagocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Loegering, D. J. 1986. Kupffer cell complement receptor clearance function and host defense.Circ. Shock. 20:321.

    Google Scholar 

  2. Loegering, D. J., L. M. Commins, F. L. Minnear, L. A. Gary, andL. A. Hill. 1987. Effect of kupffer cell phagocytosis of erythrocytes and erythrocyte ghosts on susceptibility to endotoxemia and bacteremia.Infect. Immun. 55:2074.

    Google Scholar 

  3. Commins, L. M., D. J. Loegering, andP. W. Gudewicz. 1990. Effect of phagocytosis of erythrocytes and erythrocyte ghosts on macrophage phagocytic function and hydrogen peroxide production.Inflammation 14:705.

    Google Scholar 

  4. Hand, W. L., andN. L. King-Thompson. 1983. Effect of erythrocyte ingestion on macrophage antibacterial function.Infect. Immun. 40:917.

    Google Scholar 

  5. Stewart, L. S., J. Liceaga, andJ. H. Brock. 1988. Inhibition of hydrogen peroxide release from activated macrophages by prior ingestion of erythrocytes or haemoglobin.FEMS Microbiol. Immunol. 1:27.

    Google Scholar 

  6. Adams, D. O., andT. A. Hamilton. 1984. The cell biology of macrophage activation.Annu. Rev. Immunol. 2:283.

    Google Scholar 

  7. Dijkmans, R., andA. Billiau. 1988. Interferonγ: A master key in the immune system.Curr. Opin. Immunol. 1:269.

    Google Scholar 

  8. Ralph, P., I. Nakoinz, andD. Rennick. 1988. Role of interleukin 2, interleukin 4, and alpha, beta, and gamma interferon in stimulating macrophage antibody-dependent turmoricidal activity.J. Exp. Med. 167:712.

    Google Scholar 

  9. Nathan, C. F., H. W. Murray, M. E. Wiebe, andB. Y. Rubin. 1983. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity.J. Exp. Med. 158:670.

    Google Scholar 

  10. Garotta, G., K. W. Talmadge, J. R. L. Pink, B. Dewald, andM. Baggiolini. 1986. Functional antagonism between type I and type II interferons on human macrophages.Biochem. Biophys. Res. Commun. 140:948.

    Google Scholar 

  11. Murray, H. W., B. Y. Rubin, andC. D. Rothermel. 1983. Killing of intracellularLeishmania donovani by lymphokine-stimulated human mononuclear phagocytes. Evidence that interferon-gamma is the activating lymphokine.J. Clin. Invest. 72:1506.

    Google Scholar 

  12. Murray, H. W., G. I. Byrne, C. D. Rothermel, andD. M. Cartelli. 1983. Lymphokine enhances oxygen-dependent activity against pathogens.J. Exp. Med. 158:234.

    Google Scholar 

  13. Schreiber, R. D. 1984. Identification of gamma-interferon as a murine macrophage-activating factor for tumor cytotoxicity.Contemp. Top. Immunobiol. 13:171.

    Google Scholar 

  14. Talmadge, K. W., H. Gallati, F. Sinigaglia, A. Walz, andG. Garotta. 1986. Identity between human interferon-gamma and “macrophage activating factor” produced by human T lymphocytes.Eur. J. Immunol. 16:1471.

    Google Scholar 

  15. Bukholm, H., B. P. Berdel, C. Haug, andM. Degre. 1984. Mouse fibroblast interferon modifiesSalmonella typhimurium infection in infant mice.Infect. Immun. 45:62.

    Google Scholar 

  16. Gould, C. L., andG. Sonnenfeld. 1987. Effect of treatment of mice with interferon-γ and concanavalin-A on the course of infection of mice withSalmonella typhimurium strain LT-2.J. Interferon Res. 7:255.

    Google Scholar 

  17. Hershman, M. J., H. C. Polk Jr., J. D. Pietsch, R. E. Shields, S. R. Wellhausen, andG. Sonnenfeld. 1988. Modulation of infection by gamma interferon treatment following trauma.Infect. Immun. 56:2412.

    Google Scholar 

  18. Mellors, J. W., R. J. Debs, andJ. L. Ryan. 1989. Incorporation of recombinant gamma interferon into liposomes enhances its ability to induce peritoneal macrophage antitoxoplasma activity.Infect. Immun. 57:132.

    Google Scholar 

  19. Murray, H. W. 1988. Interferon-gamma, the activated macrophage, and host defense against microbial challenge.Ann. Intern. Med. 108:595.

    Google Scholar 

  20. Watanabe, K., K. Kagaya, T. Yamada, andY. Fukazawa. 1991. Mechanism for candidacidal activity in macrophages activated by recombinant gamma interferon.Infect. Immun. 59:521.

    Google Scholar 

  21. Ruch, W. P., P. H. Cooper, andM. Baggiolino. 1983. Assay of H2O2 production by macrophages and neutrophils with homovanillic acid and horseradish peroxidase.J. Immunol. Methods 63:347.

    Google Scholar 

  22. Labarca, C., andK. Paigen. 1980. A simple, rapid, and sensitive DNA assay procedure.Anal. Biochem. 102:344.

    Google Scholar 

  23. Nathan, C. F., andS. Tsunawaki. 1986. Secretion of toxic oxygen products by macrophages: regulatory cytokines and their effect on the oxidase.In Biochemistry of Macrophages. Ciba foundation Symposium 118. Pitman, London, 211–230.

    Google Scholar 

  24. Leu, R. W., J. A. Rummage, andM. J. Horn. 1989. Characterization of murine macrophage Fc receptor-dependent phagocytosis and antibody-dependent cellular cytotoxicity during in-vitro culture with interferon-gamma, alpha/beta, and/or fetal bovine serum.Immunobiology 178:340.

    Google Scholar 

  25. Guyre, P. M., P. M. Morganelli, andR. Miller. 1983. Recombinant immune interferon increases immunoglobulin G Fc receptors.J. Clin. Invest. 72:393.

    Google Scholar 

  26. Warren, M. K., andS. N. Vogel. 1985. Bone marrow-derived macrophages: Development and regulation of differentiation markers by colony-stimulating factor and interferons.J. Immunol. 134:982.

    Google Scholar 

  27. Schwacha, M. G., D. L. Loegering, L. M. Commins, andP. W. Gudewicz. 1991. Scavengers of reactive oxygen intermediates do not mediate the depression of macrophage hydrogen peroxide production caused by erythrocyte phagocytosis.Inflammation 15:447.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwacha, M.G., Loegering, D.J. Respiratory burst capacity of activated macrophages is resistant to depression by erythrocyte phagocytosis. Inflammation 16, 285–294 (1992). https://doi.org/10.1007/BF00917621

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00917621

Keywords

Navigation