Skip to main content
Log in

Eicosanoid modulation of stress fibers in cultured bovine aortic endothelial cells

  • Original Articles
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Leukotrienes (LT) B4, LTD4, and thromboxanes (TX) are cytotoxic, and increase microvascular permeability. Because endothelial stress fibers are theorized to be part of the cytoskeletal mechanism by which microvessels maintain their barrier function, the effect of these eicosanoids on stress fibers in bovine aortic endothelial cells was tested. LTB4, LTD4, and TXB2 each decreased stress fiber numbers by 93%, 62%, and 66%, respectively, when compared to controls (P < 0.01). In contrast, endothelial cells treated with prostacyclin (PGI2) at 10−7 M, produced a significant increase (P >0.01) in stress fiber numbers, 211% to that of controls. Azaprostanoic acid (13-APA) and FPL55712, receptor antagonists to TX and slowreacting substance of anaphylaxis (SRS) receptors, respectively, the cyclooxygenase inhibitor ibuprofen, and the TX synthase inhibitors imidazole and ketoconazole were used to test for possible endothelial cell receptor mediation and de novo prostanoid synthesis associated with inflammatory eicosanoid-induced disassembly of stress fibers. Each pharmacologic agent inhibited the LTD4- and TXB2-induced decreases in stress fibers; LTB4-stimulated stress fiber decreases were inhibited only by pretreatment with TX synthase blockers. These data suggest that increased permeability associated with inflammatory eicosanoid metabolites may have as a common target stress fiber disassembly, and the mechanism may be receptor-mediated. That cyclooxygenase and TX synthase blockers inhibited the eicosanoid action suggests that endogenous TX synthesis may be a step in the mechanism. PGI2 enhancement of the microvascular barrier may be related to the effect of PGI2 on promoting stress fiber assembly. In summary, endothelial cell synthesized autocoids derived from arachidonic acid may help to regulate microvascular permeability by way of their action on stress fiber assembly/dissassembly, and unbalanced prostanoid secretion by way of LT stimulation may result in a loss of the microvascular barrier and increased permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burridge, K. 1981. Are stress fibers contractile?Nature 294:691–692.

    Google Scholar 

  2. Isenberg, C., P. C. Rathke, N. Hulsman, W. W. Franke, andB. E. Wollfarth-Botterman. 1976. Cytoplasmic actomyosin fibrils in tissue culture cells. Direct proof of contractility by visualization of ATP induced contraction in fibrils isolated by laser microbeam dissection.Cell Tissue Res. 166:427–433.

    Google Scholar 

  3. Kreis, T. E., andW. Birchmeir. 1980. Stress fiber sarcomeres of fibroblasts are contractile.Cell 22:555–561.

    Google Scholar 

  4. Herman, I. M., N. J. Crisona, andT. D. Pollard. 1981. Relation between cell activity and the distribution of cytoplasmic actin and myosin.J. Cell Biol. 90:84–91.

    Google Scholar 

  5. Herman, I. M., T. D. Pollard, andA. J. Wong. 1982. Contractile proteins in endothelial cells.Ann. N.Y. Acad. Sci. 401:50–60.

    Google Scholar 

  6. Seldon, S. C., II, andS. M. Schwartz. 1979. Cytochalasin B inhibition of endothelial proliferation at wound edges in vitro.J. Cell Biol. 81:348–354.

    Google Scholar 

  7. Shasby, D. M., S. S. Shabby, J. M. Sullivan, andM. J. Peach. 1982. Role of endothelial cytoskeleton in control of endothelial permeability.Circ. Res. 51:657–661.

    Google Scholar 

  8. Bensch, K. G., P. M. Davison, andM. A. Karasek. 1983. Factors controlling the in vitro pattern of human microvascular endothelial cells.J. Ultrastruct. Res. 82:76–89.

    Google Scholar 

  9. Dunham, B. M., H. B. Hechtman, C. R. Valeri, andD. Shepro. 1984. Antiinflammatory agents inhibit microvascular permeability induced by leukotrienes and by stimulated human neutrophils.Microcirc. Endothel. Lymphat. 1:465–489.

    Google Scholar 

  10. Utsonomiya, T., M. M. Krausz, D. Shepro, andH. B. Hechtman. 1981. Treatment of aspiration pneumonia with ibuprofen and prostacyclin (PGI2).Surgery 90:170–176.

    Google Scholar 

  11. Dunham, B., D. Shepro, andH. B. Hechtman. 1984. Leukotriene induction of TXB2 in cultured bovine aortic endothelial cells.Inflammation 8:313–321.

    Google Scholar 

  12. Sweetman, H. E., D. Shepro, andH. B. Hechtman. 1981. Inhibition of thrombocytopenic petechiae by exogenous serotonin administration.Haemostasis 10:65–78.

    Google Scholar 

  13. Shepro, D., S. L.Welles, and H. B.Hechtman, Vasoactive agonists prevent erythrocyte extravasation in thrombocytopenic hamsters.Thromb. Res. 35:421–430.

  14. Welles, S. L., D. Shepro, andH. B. Hechtman. 1985. Vasoactive amines modulate actin cables (stress fibers) and surface area in cultured bovine endothelium.J. Cell. Physiol. 123:337–342.

    Google Scholar 

  15. Jaffe, E. A., R. L. Nachman, G. C. Becker, andC. R. Minick. 1973. Culture of human endothelial cells derived from umbilical veins: Identification by morphologic and immunologic criteria.J. Clin. Invest. 32:2745–2756.

    Google Scholar 

  16. Serhan, C. N., H. M. Korchak, andG. Weissmann. 1980. PGBx, a prostaglandin derivative, mimics the action of the calcium ionophore A23187 on human neutrophils.J. Immunol. 125:2020–2024.

    Google Scholar 

  17. Serhan, C. N., J. Fridovich, E. J. Goetzl, P. B. Dunham, andG. Weissmann. 1982. Leukotriene B4 and phosphatidic acid are calcium ionophores.J. Biol. Chem. 257:4746–4752.

    Google Scholar 

  18. Hyatt, H. A., M. S. Shure, andD. A. Begg. 1984. Induction of shape transformation in sea urchin coelomocytes by the calcium ionophore A23187.Cell Motil. 4:57–73.

    Google Scholar 

  19. Borgeat, P., andB. Samuelsson. 1979. Arachidonic acid metabolism in polymorphonuclear leukocytes: Effects of ionophore A23187.Proc. Natl. Acad. Sci. U.S.A. 76:2138–2152.

    Google Scholar 

  20. Claesson, H. E., U. Lundberg, andC. Malmsten. 1981. Serum coated zymosan stimulates the synthesis of leukotriene B4 in human polymorphonuclear leukocytes. Inhibition by cyclic AMP.Biochem. Biophys. Res. Commun. 99:1230–1237.

    Google Scholar 

  21. Wong, A. J., I. M. Herman, andT. D. Pollard. 1983. Actin filament stress fibers in vascular endothelial cells in vivo.Science 219:867–869.

    Google Scholar 

  22. White, G. E., M. A. Gimbrone, Jr., andK. Fujiwara. 1983. Factors influencing the expression of stress fibers in vascular endothelial cells in situ.J. Cell Biol. 97:416–424.

    Google Scholar 

  23. Bjork, J., P. Hedqvist, andK.-E. Arfors. 1982. Increase in vascular permeability induced by leukotriene B4 and the role of polymorphonuclear leukocytes.Inflammation 6:189–200.

    Google Scholar 

  24. Dahlen, S. E., J. Bjork P. Hedqvist, K. E. Arfors, S. Hammarstrom, J. A. Lindgren, andB. Samuelsson. 1981. Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: In vivo effects with relevance to the acute inflammatory response.Proc. Natl. Acad. Sci. U.S.A. 78:3887–3891.

    Google Scholar 

  25. Kunkel S. L., R. S. Thrall, R. G. Kunkel, J. R. McCormick, P. A. Ward, andR. B. Zurier. 1979. Suppression of immune complex vasculitis in rats by prostaglandin.J. Clin. Invest. 64:1525–1529.

    Google Scholar 

  26. Utsonomiya, T., M. M. Krausz, C. R. Valeri, D. Shepro, andH. B. Hechtman. 1980. Treatment of pulmonary embolism with prostacyclin.Surgery 88:25–30.

    Google Scholar 

  27. Naccache, P. H., T. P. F. Molski, P. Borgeat, andR. I. Sha'afi. 1984. Association of leukotriene B4 with the cytoskeleton of rabbit neutrophils. Effect of chemotactic factor and phorbol esters.Biochem. Biophys. Res. Commun. 124:963–969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by NIH grants HL16714, HL33104, and GM24891.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welles, S.L., Shepro, D. & Hechtman, H.B. Eicosanoid modulation of stress fibers in cultured bovine aortic endothelial cells. Inflammation 9, 439–450 (1985). https://doi.org/10.1007/BF00916343

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00916343

Keywords

Navigation