Skip to main content
Log in

TNFα induces inflammatory stress response in microvascular endothelial cells via Akt- and P38 MAP kinase-mediated thrombospondin-1 expression

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Tumor necrosis factor-α (TNFα) and thrombospondin-1 (TSP-1) are well-known mediators of inflammation. However, a causal relationship between TNFα stimuli and TSP-1 expression in endothelial cell stress, and the underlying mechanisms has not yet been investigated. In our study, human microvascular endothelial cells (hMEC) were treated with TNFα and analyzed for endothelial dysfunction, TSP-1 expression, and associated mechanisms. TNFα treatment induced a dose-dependent increase in TSP-1 expression in hMEC associated with increased endothelial permeability, apoptosis, and reduced proliferation. Whereas TNFα activated Akt, ERK, and P38 mitogen-activated protein kinase (P38 MAPK) simultaneously in hMEC, inhibitors of Akt and P38 MAPK, but not ERK blunted TNFα-induced TSP-1 expression. Silencing of NFκB gene had no significant effect on TNFα-induced TSP-1 expression. Our study demonstrates the novel role of TNFα in inducing inflammatory stress response in hMEC through Akt- and P38 MAPK-mediated expression of TSP-1, independent of NFκB signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TNFα:

Tumor necrosis factor-α

P38 MAPK:

P38 mitogen-activated protein kinase

TSP-1:

Thrombospondin-1

MAPK:

Mitogen-activated protein kinase

ERK:

Extracellular regulated kinase

hMEC:

Human microvascular endothelial cells

ECIS:

Electric cell-substrate impedance sensing

References

  1. Zhang H et al (2009) Role of TNF-alpha in vascular dysfunction. Clin Sci (Lond) 116(3):219–230

    Article  CAS  Google Scholar 

  2. MacEwan DJ (2002) TNF ligands and receptors—a matter of life and death. Br J Pharmacol 135(4):855–875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Espino J, Rodríguez AB, Pariente JA (2013) The inhibition of TNF-α-induced leucocyte apoptosis by melatonin involves membrane receptor MT1/MT2 interaction. J Pineal Res 54(4):442–452

    CAS  PubMed  Google Scholar 

  4. Flier JS et al (1996) The tumor necrosis factor ligand and receptor families. N Engl J Med 334(26):1717–1725

    Article  Google Scholar 

  5. Swardfager W et al (2010) A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 68(10):930–941

    Article  CAS  PubMed  Google Scholar 

  6. Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104(4):487–501

    Article  CAS  PubMed  Google Scholar 

  7. Dowlati Y et al (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67(5):446–457

    Article  CAS  PubMed  Google Scholar 

  8. Brynskov J et al (2002) Tumour necrosis factor alpha converting enzyme (TACE) activity in the colonic mucosa of patients with inflammatory bowel disease. Gut 51(1):37–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Feldmann M (2002) Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol 2(5):364–371

    Article  CAS  PubMed  Google Scholar 

  10. Dixit VM (1992) Thrombospondin and tumor necrosis factor. Kidney Int 41:679–682

    Article  CAS  PubMed  Google Scholar 

  11. Wight TN et al (1985) Light microscopic immunolocation of thrombospondin in human tissues. J Histochem Cytochem 33(4):295–302

    Article  CAS  PubMed  Google Scholar 

  12. Naganuma H et al (2004) Quantification of thrombospondin-1 secretion and expression of αvβ3 and α3β1 integrins and syndecan-1 as cell-surface receptors for thrombospondin-1 in malignant glioma cells. J Neurooncol 70(3):309–317

    Article  PubMed  Google Scholar 

  13. Raugi GJ, Olerud JE, Gown AM (1987) Thrombospondin in early human wound tissue. J Invest Dermatol 89(6):551–554

    Article  CAS  PubMed  Google Scholar 

  14. DiPietro LA et al (1996) Thrombospondin 1 synthesis and function in wound repair. Am J Pathol 148(6):1851

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Gotis-Graham I, Hogg PJ, McNeil HP (1997) Significant correlation between thrombospondin 1 and serine proteinase expression in rheumatoid synovium. Arthritis Rheum 40(10):1780–1787

    Article  CAS  PubMed  Google Scholar 

  16. Resovi A et al (2014) Current understanding of the thrombospondin-1 interactome. Matrix Biol 37:83–91

    Article  CAS  PubMed  Google Scholar 

  17. Narizhneva NV et al (2005) Thrombospondin-1 up-regulates expression of cell adhesion molecules and promotes monocyte binding to endothelium. FASEB J 19(9):1158–1160

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Mansfield PJ, Suchard SJ (1994) Thrombospondin promotes chemotaxis and haptotaxis of human peripheral blood monocytes. J Immunol 153(9):4219–4229

    CAS  PubMed  Google Scholar 

  19. Suchard SJ (1993) Interaction of human neutrophils and HL-60 cells with the extracellular matrix. Blood Cells 19(2):197

    CAS  PubMed  Google Scholar 

  20. Mansfield PJ, Boxer LA, Suchard SJ (1990) Thrombospondin stimulates motility of human neutrophils. J Cell Biol 111(6):3077–3086

    Article  CAS  PubMed  Google Scholar 

  21. Goc A et al (2011) TGFβ-and bleomycin-induced extracellular matrix synthesis is mediated through Akt and mammalian target of rapamycin (mTOR). J Cell Physiol 226(11):3004–3013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Goc A et al (2013) P21 activated kinase-1 (Pak1) promotes prostate tumor growth and microinvasion via inhibition of transforming growth factor β expression and enhanced matrix metalloproteinase 9 secretion. J Biol Chem 288(5):3025–3035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Al-Husein B, Goc A, Somanath PR (2013) Suppression of interactions between prostate tumor cell-surface integrin and endothelial ICAM-1 by simvastatin inhibits micrometastasis. J Cel Physiol 228(11):2139–2148

    Article  CAS  Google Scholar 

  24. Kochuparambil ST et al (2011) Anticancer efficacy of simvastatin on prostate cancer cells and tumor xenografts is associated with inhibition of Akt and reduced prostate-specific antigen expression. J Pharmacol Exp Ther 336(2):496–505

    Article  CAS  PubMed  Google Scholar 

  25. Luan Y, Yao Y, Sheng Z (2013) The tumor necrosis factor-alpha-induced protein 8 family in immune homeostasis and inflammatory cancer diseases. J Biol Regul Homeost Agents 27:611–619

    CAS  PubMed  Google Scholar 

  26. Cromer WE et al (2013) The effects of inflammatory cytokines on lymphatic endothelial barrier function. Angiogenesis 17:1–12

    Google Scholar 

  27. Cross TG et al (2000) Serine/threonine protein kinases and apoptosis. Exp Cell Res 256(1):34–41

    Article  CAS  PubMed  Google Scholar 

  28. Goc A et al (2011) PI3 kinase integrates Akt and MAP kinase signaling pathways in the regulation of prostate cancer. Int J Oncol 38(1):267–277

    CAS  PubMed  Google Scholar 

  29. Mathur RK et al (2004) Reciprocal CD40 signals through P38 MAPK and ERK-1/2 induce counteracting immune responses. Nat Med 10(5):540–544

    Article  CAS  PubMed  Google Scholar 

  30. Rommel C et al (1999) Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286(5445):1738–1741

    Article  CAS  PubMed  Google Scholar 

  31. Tzivion G, Luo Z, Avruch J (1998) A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity. Nature 394(6688):88–92

    Article  CAS  PubMed  Google Scholar 

  32. Blanc A, Pandey NR, Srivastava AK (2003) Synchronous activation of ERK 1/2, P38 MAPK and PKB/Akt signaling by H2O2 in vascular smooth muscle cells: potential involvement in vascular disease (review). Int J Mol Med 11(2):229–234

    CAS  PubMed  Google Scholar 

  33. Somanath P et al (2009) The role of PAK-1 in activation of MAP kinase cascade and oncogenic transformation by Akt. Oncogene 28(25):2365–2369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Li J, Yin Q, Wu H (2013) Structural basis of signal transduction in the TNF receptor superfamily. Adv Immunol 119:135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Kandel ES, Hay N (1999) The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res 253(1):210–229

    Article  CAS  PubMed  Google Scholar 

  36. Somanath PR et al (2006) Akt1 in endothelial cell and angiogenesis. Cell cycle (Georgetown, Tex.) 5(5):512

    Article  CAS  Google Scholar 

  37. Daviet L et al (1997) Thrombospondin induces dimerization of membrane-bound, but not soluble CD36. Thromb Haemost 78(2):897–901

    CAS  PubMed  Google Scholar 

  38. Jiménez B et al (2000) Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6(1):41–48

    Article  PubMed  Google Scholar 

  39. Pachman LM et al (2001) Juvenile dermatomyositis: the association of the TNFα-308A Allele and disease chronicity. Curr Rheumatol Rep 3(5):379–386

    Article  CAS  PubMed  Google Scholar 

  40. Lutz J et al (2002) Increased plasma thrombospondin-1 (TSP-1) levels are associated with the TNFα-308A allele in children with juvenile dermatomyositis. Clin Immunol 103(3):260–263

    Article  CAS  PubMed  Google Scholar 

  41. Segundo González M et al (2003) TNF-alpha-308A promoter polymorphism is associated with enhanced TNF-alpha production and inflammatory activity in Crohn’s patients with fistulizing disease. Am J Gastroenterol 98:1101–1106

    PubMed  Google Scholar 

  42. Chen J et al (2005) Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nat Med 11(11):1188–1196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Aslam M et al (2012) TNF-alpha induced NFκB signaling and p65 (RelA) overexpression repress Cldn5 promoter in mouse brain endothelial cells. Cytokine 57(2):269–275

    Article  CAS  PubMed  Google Scholar 

  44. Li W et al (2012) An essential role for the Id1/PI3 K/Akt/NFkB/survivin signalling pathway in promoting the proliferation of endothelial progenitor cells in vitro. Mol Cell Biochem 363(1–2):135–145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Klettner A et al (2012) Regulation of constitutive vascular endothelial growth factor secretion in retinal pigment epithelium/choroid organ cultures: p38, nuclear factor kappaB, and the vascular endothelial growth factor receptor-2/phosphatidylinositol 3 kinase pathway. Mol Vis 19:281–291

    Google Scholar 

Download references

Acknowledgments

Funds were provided by the National Institutes of Health Grant (R01HL103952), University of Georgia College of Pharmacy Foundation to PRS. AF was supported by a fellowship from Umm Al-Qura University, Makkah, Saudi Arabia. This material is the result of work supported with resources and the use of facilities at the Charlie Norwood VAMC, Augusta, GA. The funders had no role in the study design, data collection, analysis, and decision to publish. Preparation of the manuscript and the contents do not represent the views of the Department of Veterans Affairs or the United States Government. The funders had no role in study design, data collection and analysis, decision to publish, or in preparation of the manuscript.

Conflict of interest

The authors have declared that no conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payaningal R. Somanath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fairaq, A., Goc, A., Artham, S. et al. TNFα induces inflammatory stress response in microvascular endothelial cells via Akt- and P38 MAP kinase-mediated thrombospondin-1 expression. Mol Cell Biochem 406, 227–236 (2015). https://doi.org/10.1007/s11010-015-2440-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2440-0

Keywords

Navigation