Skip to main content
Log in

Electrostatic and optical resonances of arrays of cylinders

  • Invited Paper
  • Published:
Applied physics Aims and scope Submit manuscript

Abstract

The solutions of the electrostatic potential problem for the square and hexagonal arrays of circular cylinders with zero applied field (homogeneous or resonant solutions) are studied. We show that for non-touching cylinders, the set of resonances is discrete except in the neighbourhood of one point, at which the dielectric constant of the array has an essential singularity. For arrays of touching cylinders, the set is well represented by a continuous distribution. This representation enables the derivation of the asymptotic form of the expansion for the dielectric constant of the array when the dielectric constant of the cylinders is large. The known value of the first term in the expansion enables us to derive the second term. The physical characteristics of the resonant solutions are studied. Metals achieve values of dielectric constant which are close to the resonant values (real and negative) for certain wavelengths. Curves are given which enable the prediction of those wavelengths at which the optical resonances of both arrays occur, for any area fraction and composition of a columnar cerment film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. McPhedran, D.R. McKenzie: Proc. R. Soc. Lond. Ser. A359, 45–63 (1978)

    ADS  Google Scholar 

  2. D.R. McKenzie, R.C. McPhedran, G.H. Derrick: Proc. R. Soc. Lond. Ser. A362, 211–232 (1978)

    ADS  Google Scholar 

  3. D.R. McKenzie, R.C. McPhedran: InElectrical Transport and Optical Properties of Inhomogeneous Media, ed. by J.C. Garland and D.B. Tanner (American Institute of Physics, New York 1978) pp. 283–287 and 294–299

    Google Scholar 

  4. W.T. Perrins, R.C. McPhedran, D.R. McKenzie: Thin Solid Films,57, 321–326 (1979)

    Article  Google Scholar 

  5. W.T. Perrins, D.R. McKenzie, R.C. McPhedran: Proc. R. Soc. Lond Ser. A369, 207–225 (1979)

    ADS  MathSciNet  Google Scholar 

  6. W.T. Doyle: J. Appl. Phys.49, 795–797 (1978)

    Article  ADS  Google Scholar 

  7. J.C.C. Fan, P.M. Zavracky: Appl. Phys. Lett.29, 478–480 (1976)

    Article  ADS  Google Scholar 

  8. J.I. Gittleman, B. Abeles, P. Zanzucchi Y. Arie: Thin Solid Films45, 9–18 (1977)

    Article  Google Scholar 

  9. J.C. Maxwell Gernett: Philos. Trans. R. Soc. Lond. Ser. A203, 385–420 (1904)

    ADS  Google Scholar 

  10. D.J. Bergman: Phys. Rep.43, 377–407 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  11. D.J. Bergman: Phys. Rev. B,19, 2359–2368 (1979)

    Article  ADS  Google Scholar 

  12. D.J. Bergman: J. Phys. C,12, 4947–4960 (1979)

    Article  ADS  Google Scholar 

  13. Lord Rayleigh: Philos Mag.34, 481–502 (1892)

    Google Scholar 

  14. R.W.O'Brien: Unpublished Ph. D. thesis (University of Cambridge, 1977)

  15. J.H. Wilkinson:The Algebraic Eigenvalue Problem (Clarendon Press, Oxford 1965) pp. 24–26

    MATH  Google Scholar 

  16. A.M. Dykhne: Zh. Eksp. Teor. Fiz.59, 110–115 (1970)

    Google Scholar 

  17. K.S. Mendelson: J. Appl. Phys.46, 917–918 (1975)

    Article  ADS  Google Scholar 

  18. J.B. Keller: J. Appl. Phys.34, 991–993 (1963)

    Article  Google Scholar 

  19. J.B. Keller: J. Math. Phys.5, 548–549 (1964)

    Article  Google Scholar 

  20. J.D. Jackson:Classical Electrodynamics (John Wiley and Sons New York 1962) pp. 14, 25

    Google Scholar 

  21. L.G. Schulz: J. Opt. Soc. Am.44, 357–368 (1954)

    Google Scholar 

  22. G.P. Moutulevich: Proc. P. N. Lebedev Inst.55, 57–82 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McPhedran, R.C., McKenzie, D.R. Electrostatic and optical resonances of arrays of cylinders. Appl. Phys. 23, 223–235 (1980). https://doi.org/10.1007/BF00914904

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00914904

PACS

Navigation