Skip to main content
Log in

Eine Näherung zur Voraussage des Zusatzvolumens binärer nichtassoziierter Mischungen

Estimation of the excess volume of binary nonassociated mixtures

  • Anorganische, Struktur- und Physikalische Chemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Abstract

The excess volume of simple binary liquid nonassociated mixtures is calculated from data of the excessGibbs free energy and the enthalpy of mixing using a relationship between the excess volume and the excess entropy at constant pressure and at constant volume given byScatchard 1. Estimation of the excess entropy at constant volume for component molecules of equal size is based on theScatchard-Hildebrand 2,3 concept, differences in molecular size are taken into account by a separateFlory-Huggins 4,5 term.

The proposed correlation provides a reasonable estimate of the excess volume from easily obtainable macroscopic properties without any fitting parameters. The method was tested on 31 systems and only in two cases where the excess volume is very small, the sign is incorrectly predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. G. Scatchard, Trans. Farad. Soc.33, 160 (1937).

    Google Scholar 

  2. G. Scatchard, Chem. Rev.8, 321 (1931).

    Google Scholar 

  3. J. H. Hildebrand undS. E. Wood, J. Chem. Phys.1, 817 (1933).

    Google Scholar 

  4. P. J. Flory, J. Chem. Phys.10, 51 (1942).

    Google Scholar 

  5. M. L. Huggins, Ann. N. Y. Acad. Sci.43, 1 (1942).

    Google Scholar 

  6. J. H. Hildebrand undR. L. Scott, The Solubility of Nonelectrolytes. New York: Reinhold. 1950.

    Google Scholar 

  7. E. W. Funk undJ. M. Prausnitz, Ind. Engng. Chem.62 (9), 8 (1970).

    Google Scholar 

  8. E. Liebermann undE. Wilhelm, Mh. Chem.107, 367 (1976).

    Google Scholar 

  9. F. Kohler, Mh. Chem.88, 857 (1957).

    Google Scholar 

  10. P. J. Flory, R. A. Orwoll undA. Vrij, J. Amer. Chem. Soc.86, 3507 (1964);P. J. Flory, ibid. J. Amer. Chem. Soc.87, 1833 (1965).

    Google Scholar 

  11. R. L. Scott, J. Phys. Chem.64, 1241 (1960).

    Google Scholar 

  12. E. Liebermann undV. Fried, Ind. Engng. Chem., Fundam.11, 350 (1972).

    Google Scholar 

  13. J. H. van der Waals, Trans. Farad. Soc.52, 916 (1956).

    Google Scholar 

  14. K. Shinoda undJ. H. Hildebrand, J. Phys. Chem.65, 183 (1961).

    Google Scholar 

  15. E. Wilhelm, R. Schano, G. Becker, G. H. Findenegg undF. Kohler, Trans. Farad. Soc.65, 1443 (1969).

    Google Scholar 

  16. L. A. K. Staveley, W. I. Tupman undK. R. Hart Trans. Farad. Soc.51, 323 (1955).

    Google Scholar 

  17. F. Kohler undE. Rott, Mh. Chem.85, 703 (1954).

    Google Scholar 

  18. R. E. Gibson undO. H. Loeffler, J. Amer. Chem. Soc.61, 2515 (1939).

    Google Scholar 

  19. E. Wilhelm, E. Rott undF. Kohler, Proc. 1st Internat. Conf. Calorimetry and Thermodynamics (Warsaw), p. 767 (1969).

  20. J. N. Brønsted undJ. K. Koefoed, Danske Vidensk. Selsk.22 (17), 1 (1946).

    Google Scholar 

  21. J. H. van der Waals undJ. J. Hermans, Rec. Trav. Chim. Pays-Bas69, 971 (1950).

    Google Scholar 

  22. V. Mathot, Bull. Soc. Chim. Belg.59, 111 (1950).

    Google Scholar 

  23. A. R. Mathieson undJ. C. J. Thynne, J. Chem. Soc.1956, 3708.

  24. J. L. Crützen, R. Haase undL. Sieg, Z. Naturforsch.5 a, 600 (1950).

    Google Scholar 

  25. R. Battino, J. Phys. Chem.70, 3408 (1966).

    Google Scholar 

  26. J. D. Gomez-Ibanez, J. J. C. Shieh undE. M. Thorsteinson, J. Phys. Chem.70, 1998 (1966).

    Google Scholar 

  27. J. D. Gomez-Ibanez undJ. J. C. Shieh, J. Phys. Chem.69, 1660 (1965).

    Google Scholar 

  28. C. P. Brown, A. R. Mathieson undJ. C. J. Thynne, J. Chem. Soc.1955, 4141.

  29. D. V. S. Jain undB. S. Lark, J. Chem. Thermodyn.5, 455 (1973).

    Google Scholar 

  30. A. E. P. Watson, I. A. McLure, J. B. Bennett undG. C. Benson, J. Phys. Chem.69, 2753 (1965).

    Google Scholar 

  31. J. Sameshima, J. Amer. Chem. Soc.40, 1503 (1918).

    Google Scholar 

  32. H. Hirobe, J. Fac. Sci. Univ. Tokyo1, 155 (1925).

    Google Scholar 

  33. V. Mathot undA. Desmyter, J. Chem. Phys.21, 782 (1953).

    Google Scholar 

  34. A. Englert-Chwoles, J. Chem. Phys.23, 1168 (1955).

    Google Scholar 

  35. T. Boublik, V. T. Lam, S. Murakami undG. C. Benson, J. Phys. Chem.73, 2356 (1969).

    Google Scholar 

  36. S. E. Wood undJ. A. Gray, III, J. Amer. Chem. Soc.74, 3729 (1952).

    Google Scholar 

  37. G. Scatchard, L. B. Ticknor, J. R. Goates undE. R. McCartney, J. Amer. Chem. Soc.74, 3721 (1952).

    Google Scholar 

  38. G. Scatchard, S. E. Wood undJ. M. Mochel, J. Amer. Chem. Soc.62, 712 (1940).

    Google Scholar 

  39. G. Miksch, E. Liebermann undF. Kohler, Mh. Chem.100, 1574 (1969).

    Google Scholar 

  40. L. Sieg, J. L. Crützen undW. Jost, Z. Phys. Chem.A198, 263 (1951).

    Google Scholar 

  41. E. Liebermann undF. Kohler, Mh. Chem.99, 2514 (1968).

    Google Scholar 

  42. E. Baud, Bull. Soc. Chim. France17, 329 (1915).

    Google Scholar 

  43. F. Kohler, Chem. Technik18, 272 (1966).

    Google Scholar 

  44. A. Abe undP. J. Flory, J. Amer. Chem. Soc.87, 1838 (1965).

    Google Scholar 

  45. R. A. Orwoll undP. J. Flory, J. Amer. Chem. Soc.89, 6822 (1967).

    Google Scholar 

  46. F. Kohler, Mh. Chem.100, 1151 (1969).

    Google Scholar 

  47. A. Desmyter undJ. H. van der Waals, Rec. Trav. Chim. Pays-Bas77, 53 (1958).

    Google Scholar 

  48. S. E. Wood undO. Sandus, J. Phys. Chem.60, 801 (1956).

    Google Scholar 

  49. E. L. Heric undJ. G. Brewer, J. Chem. Engng. Data12, 574 (1967).

    Google Scholar 

  50. H. Dunken, Z. Phys. Chem.B53, 264 (1943).

    Google Scholar 

  51. H. W. Prengle, E. G. Felton undM. A. Pike, J. Chem. Engng. Data12, 193 (1967).

    Google Scholar 

  52. D. Quiggle undM. R. Fenske, J. Amer. Chem. Soc.59, 1829 (1937).

    Google Scholar 

  53. S. E. Wood undJ. P. Brusie, J. Amer. Chem. Soc.65, 1891 (1943).

    Google Scholar 

  54. G. H. Findenegg undF. Kohler, Trans. Farad. Soc.63, 870 (1967).

    Google Scholar 

  55. E. A. Guggenheim, Discuss. Farad. Soc.15, 24 (1953).

    Google Scholar 

  56. A. J. Ashworth undD. H. Everett, Trans. Farad. Soc.56, 1609 (1960).

    Google Scholar 

  57. A. J. B. Cruickshank, B. W. Gainey undC. L. Young, Trans. Farad. Soc.64, 337 (1968).

    Google Scholar 

  58. H. C. Longuet-Higgins, Discuss. Farad. Soc.15, 73 (1953).

    Google Scholar 

  59. J. H. Hildebrand, Discuss. Farad. Soc.15, 9 (1953).

    Google Scholar 

  60. J. H. Hildebrand, J. M. Prausnitz undR. L. Scott, Regular and Related Solutions, Kapitel 5. New York: Van Nostrand-Reinhold. 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Prof. Dr.Hans Nowotny zum 65. Geburtstag in Verehrung gewidmet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liebermann, E. Eine Näherung zur Voraussage des Zusatzvolumens binärer nichtassoziierter Mischungen. Monatshefte für Chemie 108, 505–515 (1977). https://doi.org/10.1007/BF00912793

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00912793

Navigation