Skip to main content
Log in

Electrophilic substitution of the aromatic carbon atom

Communication 3. Protolysis of phenylmercury bromide in dioxane with various water contents

  • Published:
Bulletin of the Academy of Sciences of the USSR, Division of chemical science Aims and scope

Conclusions

  1. 1.

    The protolysis of phenylmercury bromide by hydrogen chloride in aqueous dioxane in the presence of sodium iodide is accomplished according to different mechanisms, depending upon the water content in the solvent.

  2. 2.

    In 90–95% dioxane, protolysis proceeds according to an SE2 mechanism, through a closed transition state.

  3. 3.

    In 80–60% dioxane, protolysis proceeds according to an SE1 mechanism, complicated by acid catalysis, accomplished by ion pairs of the acid.

  4. 4.

    An approximate calculation of the kinetics in the transition region (85% dioxane) was undertaken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. I. P. Beletskaya, A. E. Myshkin, and O. A. Reutov, Izv. AN SSSR, Ser. Khim.,1965, 240.

  2. O. A. Reutov, B. Praisnar, I. P. Beletskaya, and V. I. Sokolov, Izv. AN SSSR, Otd. Khim., N.,1963, 970.

  3. I. P. Beletskaya, V. I. Karpov, and O. A. Reutov, Izv. AN SSSR, Ser. Khim.,1966, 963.

  4. A. N. Nesmeyanov, L. G. Makarova, and T. P. Tolstaya,1, 145 (1957).

  5. E. A. Braude, J. Chem. Soc.,1944, 443.

  6. O. A. Reutov, I. P. Beletskaya, and M. I. Aleinikova, Zh. Fiz. Khimii,26, 489 (1962).

    Google Scholar 

  7. K. Ichikava, H. Ouchi, and S. Araki, J, Amer. Chem. Soc.,82, 3880 (1960).

    Google Scholar 

  8. F. Kaufman and A. H. Corwin, J. Amer. Chem. Soc.,77, 6280 (1955).

    Google Scholar 

  9. R. E. Dessy, G. F. Reynolds, and Kim Sin-young, J. Amer. Chem. Soc.,81, 2683 (1959).

    Google Scholar 

  10. O. W. Berg, W. P. Lay, A. Rodgam, and G. F. Wright, Canad. J. Chem.,36, 358 (1958).

    Google Scholar 

  11. H. S. Harned et al., J. Amer. Chem. Soc.,60, 336, 339, 2128, 2130, 2133 (1938).

    Google Scholar 

  12. E. A. Braude and E. S. Stern, J. Chem. Soc.,1948, 1976.

  13. J. J. Delpuech, Compt. rend.,256, 934 (1963).

    Google Scholar 

  14. M. M. Kreevoy, J. Amer. Chem. Soc.,79, 5927 (1957).

    Google Scholar 

  15. S. Winstein, E. Clippinger, A. M. Fainberg, and G. C. Robinson, J. Amer. Chem. Soc.,76, 2597 (1954).

    Google Scholar 

  16. E. D. Hughes, C. K. Ingold, and U. G. Shapiro, J. Chem. Soc.,1936, 225.

  17. G. Barbieri and A. Pignedoli, Atti Soc. natur. e mat. Modena,85–86, 95, 1954–1955 (1956).

    Google Scholar 

  18. V. Gold, J. Chem. Soc.,1956, 4633.

  19. P. Casapieri and E. P. Swart, J. Chem. Soc.,1961, 4342.

  20. I. B. Xyne and P. E. Robertson, Canad. J. Chem.,34, 863 (1956).

    Google Scholar 

  21. C. Prevost, Ind. chim. belge,23, 1231 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 238–245, February, 1967.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beletskaya, I.P., Myshkin, A.E. & Reutov, O.A. Electrophilic substitution of the aromatic carbon atom. Russ Chem Bull 16, 232–238 (1967). https://doi.org/10.1007/BF00912419

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00912419

Keywords

Navigation