Skip to main content
Log in

Reaction Pattern and Mechanistic Aspects of Iodine and Iodine-Based Reagents in Selenylation of Aliphatic, Aromatic, and (Hetero)Cyclic Systems

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Organoselenium compounds have been the subject of extensive research since the discovery of the biologically active compound ebselen. Ebselen has recently been found to show activity against the main protease of the virus responsible for COVID-19. Other organoselenium compounds are also well-known for their diverse biological activities, with such compounds exhibiting interesting physical properties relevant to the fields of electronics, materials, and polymer chemistry. In addition, the incorporation of selenium into various organic molecules has garnered significant attention due to the potential of selenium to enhance the biological activity of these molecules, particularly in conjunction with bioactive heterocycles. Iodine and iodine-based reagents play a prominent role in the synthesis of organoselenium compounds, being valued for their cost-effectiveness, non-toxicity, and ease of handling. These reagents efficiently selenylate a broad range of organic substrates, encompassing alkenes, alkynes, and cyclic, aromatic, and heterocyclic molecules. They serve as catalysts, additives, inducers, and oxidizing agents, facilitating the introduction of different functional groups at alternate positions in the molecules, thereby allowing for regioselective and stereoselective approaches. Specific iodine reagents and their combinations can be tailored to follow the desired reaction pathways. Here, we present a comprehensive review of the progress in the selenylation of organic molecules using iodine reagents over the past decade, with a focus on reaction patterns, solvent effects, heating, microwave, and ultrasonic conditions. Detailed discussions on mechanistic aspects, such as electrophilic, nucleophilic, radical, electrochemical, and ring expansion reactions via selenylation, multiselenylation, and difunctionalization, are included. The review also highlights the formation of various cyclic, heterocyclic, and heteroarenes resulting from the in situ generation of selenium intermediates, encompassing cyclic ketones, cyclic ethers, cyclic lactones, selenophenes, chromones, pyrazolines, pyrrolidines, piperidines, indolines, oxazolines, isooxazolines, lactones, dihydrofurans, and isoxazolidines. To enhance the reader’s interest, the review is structured into different sections covering the selenylation of aliphatic sp2/sp carbon and cyclic sp2 carbon, and then is further subdivided into various heterocyclic molecules.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Fig. 2
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Fig. 3
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Scheme 61
Scheme 62
Scheme 63
Scheme 64
Fig. 4
Scheme 65
Scheme 66
Scheme 67
Scheme 68
Scheme 69
Scheme 70
Fig. 5
Fig. 6
Scheme 71
Scheme 72
Scheme 73
Scheme 74
Scheme 75
Scheme 76
Scheme 77
Scheme 78
Scheme 79
Scheme 80
Fig. 7
Scheme 81
Scheme 82
Scheme 83
Scheme 84
Scheme 85.
Scheme 86
Scheme 87
Fig. 8
Scheme 88
Scheme 89
Fig. 9
Scheme 90
Scheme 91
Scheme 92
Scheme 93
Scheme 94
Scheme 95
Fig. 10
Scheme 96
Scheme 97
Scheme 98
Scheme 99
Scheme 100
Scheme 101
Scheme 102
Scheme 103
Scheme 104
Scheme 105
Scheme 106
Scheme 107
Scheme 108
Scheme 109
Scheme 110

Similar content being viewed by others

Data Availability

The information presented in this review article can be accessed on the internet through the provided references. The authors affirm that the data substantiating the conclusions drawn in this study are included in the article.

References

  1. Akhoon SA, Naqvi T, Nisar S, Rizvi MA (2015) Synthetic organo-selenium compounds in medicinal domain. Asian J Chem. https://doi.org/10.14233/ajchem.2015.18834

    Article  Google Scholar 

  2. Freudendahl DM, Shahzad SA, Wirth T (2009) Recent advances in organoselenluim chemistry. Eur J Org Chem. https://doi.org/10.1002/ejoc.200990025

    Article  Google Scholar 

  3. Kumar S, Sharma N, Maurya IK et al (2016) Facile synthesis, structural evaluation, antimicrobial activity and synergistic effects of novel imidazo[1,2- a ]pyridine based organoselenium compounds. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2016.07.076

    Article  PubMed  Google Scholar 

  4. May SW, Pollock SH (1998) Selenium-based antihypertensives. Drugs. https://doi.org/10.2165/00003495-199856060-00001

    Article  PubMed  Google Scholar 

  5. Mal’tseva VN, Goltyaev MV, Turovsky EA, Varlamova EG (2022) Immunomodulatory and anti-inflammatory properties of selenium-containing agents: their role in the regulation of defense mechanisms against COVID-19. Int J Mol Sci. https://doi.org/10.3390/ijms23042360

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ibrahim M, Muhammad N, Naeem M, Deobald AM, Kamdem JP, Rocha JBT (2015) In vitro evaluation of glutathione peroxidase (GPx)-like activity and antioxidant properties of an organoselenium compound. Toxicol In Vitro. https://doi.org/10.1016/j.tiv.2015.03.017

    Article  PubMed  Google Scholar 

  7. Radomska D, Czarnomysy R, Radomski D, Bielawski K (2021) Selenium compounds as novel potential anticancer agents. Int J Mol Sci. https://doi.org/10.3390/ijms22031009

    Article  PubMed  PubMed Central  Google Scholar 

  8. Plano D, Karelia DN, Pandey MK, Spallholz JE, Amin S, Sharma AK (2016) Design, synthesis, and biological evaluation of novel selenium (Se-NSAID) molecules as anticancer agents. J Med Chem. https://doi.org/10.1021/acs.jmedchem.5b01503

    Article  PubMed  Google Scholar 

  9. Barbosa NV, Nogueira CW, Nogara PA, de Bem AF, Aschner M, Rocha JBT (2017) Organoselenium compounds as mimics of selenoproteins and thiol modifier agents. Metallomics. https://doi.org/10.1039/c7mt00083a

    Article  PubMed  Google Scholar 

  10. Domínguez-Álvarez E, Gajdács M, Spengler G et al (2016) Identification of selenocompounds with promising properties to reverse cancer multidrug resistance. Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2016.04.064

    Article  PubMed  Google Scholar 

  11. Weglarz-Tomczak E, Tomczak JM, Talma M, Burda-Grabowska M, Giurg M, Brul S (2021) Identification of ebselen and its analogues as potent covalent inhibitors of papain-like protease from SARS-CoV-2. Sci Rep. https://doi.org/10.1038/s41598-021-83229-6

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sancineto L, Mariotti A, Bagnoli L et al (2015) Design and synthesis of diselenobisbenzamides (DISeBAs) as nucleocapsid protein 7 (NCp7) inhibitors with anti-HIV activity. J Med Chem. https://doi.org/10.1021/acs.jmedchem.5b01183

    Article  PubMed  Google Scholar 

  13. Vilela F, Vobecka Z, Skabara PJ (2009) Organic conductors containing selenium and tellurium. PATAI’S Chem Funct Groups. https://doi.org/10.1002/9780470682531.pat0714

    Article  Google Scholar 

  14. Chhabria S, Desai K (2016) Selenium nanoparticles and their applications. Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, Valencia, pp 1–32

    Google Scholar 

  15. Xia J, Li T, Lu C, Xu H (2018) Selenium-containing polymers: perspectives toward diverse applications in both adaptive and biomedical materials. Macromolecules. https://doi.org/10.1021/acs.macromol.8b01597

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cao W, Wang L, Xu H (2015) Selenium/tellurium containing polymer materials in nanobiotechnology. Nano Today. https://doi.org/10.1016/j.nantod.2015.11.004

    Article  Google Scholar 

  17. Calvez L, Ma HL, Lucas J, Zhang XH (2007) Selenium-based glasses and glass ceramics transmitting light from the visible to the far-IR. Adv Mater. https://doi.org/10.1002/adma.200601962

    Article  Google Scholar 

  18. Naumov AV (2010) Selenium and tellurium: state of the markets, the crisis, and its consequences. Metallurgist. https://doi.org/10.1007/s11015-010-9280-7

    Article  Google Scholar 

  19. Duan Y, Luo G, Jung B, Kaushik V, Batchelor B, Abdel-Wahab A (2017) Photochemical degradation of arsenic and selenium with advanced reduction processes—effects of reagents. Environ Eng Sci. https://doi.org/10.1089/ees.2016.0513

    Article  Google Scholar 

  20. Zhong W, Sun F, He G (2020) Photochemical preparation of selenium-rGO composite for application in photocatalytic degradation. IOP Conf Ser: Mater Sci Eng. https://doi.org/10.1088/1757-899X/730/1/012040

    Article  Google Scholar 

  21. Gao X, Gao T, Zhang L (2003) Solution-solid growth of α-monoclinic selenium nanowires at room temperature. J Mater Chem. https://doi.org/10.1039/B209399E

    Article  Google Scholar 

  22. Kurokawa Y, Nakagawa T, Maeda S et al (2015) High-sensitivity image sensor with stacked structure comprising crystalline selenium photoconductor, crystalline OS FET, and CMOS FET. IISW 348–351

  23. Shaw RF, Ghosh AK (1980) Selenium heterostructure solar cells. Solar Cells 1:431

    Article  CAS  Google Scholar 

  24. Xu Z, Fan Q, Meng X et al (2017) Selenium-containing medium bandgap copolymer for bulk heterojunction polymer solar cells with high efficiency of 9.8%. Chem Mater. https://doi.org/10.1021/acs.chemmater.7b00729

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ruck M, Locherer F (2015) Coordination chemistry of homoatomic ligands of bismuth, selenium and tellurium. Coord Chem Rev. https://doi.org/10.1016/j.ccr.2014.10.010

    Article  Google Scholar 

  26. Cargnelutti R, Schumacher RF, Belladona AL, Kazmierczak JC (2021) Coordination chemistry and synthetic approaches of pyridyl-selenium ligands: a decade update. Coord Chem Rev. https://doi.org/10.1016/j.ccr.2020.213537

    Article  Google Scholar 

  27. Conrad O, Jansen C, Krebs B (1998) Boron-sulfur and boron-selenium compounds-from unique molecular structural principles to novel polymeric materials. Angew Chem Int Ed. https://doi.org/10.1002/(SICI)1521-3773(19981217)37:23%3C3208::AID-ANIE3208%3E3.0.CO;2-5

    Article  Google Scholar 

  28. Xu H, Cao W, Zhang X (2013) Selenium-containing polymers: promising biomaterials for controlled release and enzyme mimics. Acc Chem Res. https://doi.org/10.1021/ar4000339

    Article  PubMed  Google Scholar 

  29. Roeinfard M, Zahedifar M, Darroudi M, Khorsand Zak A, Sadeghi E (2020) Preparation and characterization of selenium-decorated graphene quantum dots with high afterglow for application in photodynamic therapy. Luminescence. https://doi.org/10.1002/bio.3798

    Article  PubMed  Google Scholar 

  30. Kim YW, Bae SM, Liu HB, Kim IW, Chun HJ, Ahn WS (2012) Selenium enhances the efficacy of Radachlorin mediated-photodynamic therapy in TC-1 tumor development. Oncol Rep. https://doi.org/10.3892/or.2012.1820

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sun C, Gao S, Tan Y, Zhang Z, Xu H (2021) Side-chain selenium-grafted polymers combining antiangiogenesis treatment with photodynamic therapy and chemotherapy. ACS Biomater Sci Eng. https://doi.org/10.1021/acsbiomaterials.1c00254

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li Q, Zhang Y, Chen Z et al (2020) Organoselenium chemistry-based polymer synthesis. Org Chem Front. https://doi.org/10.1039/D0QO00640H

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ullah H, Liu G, Yousaf B et al (2019) A comprehensive review on environmental transformation of selenium: recent advances and research perspectives. Environ Geochem Health. https://doi.org/10.1007/s10653-018-0195-8

    Article  PubMed  Google Scholar 

  34. Nogueira CW, Barbosa NV, Rocha JB (2021) Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol. https://doi.org/10.1007/s00204-021-03003-5

    Article  PubMed  PubMed Central  Google Scholar 

  35. Luo D, Wu G, Yang H et al (2016) Copper-catalyzed three-component reaction for regioselective aryl-and heteroarylselenation of indoles using selenium powder. J Org Chem. https://doi.org/10.1021/acs.joc.6b00229

    Article  PubMed  Google Scholar 

  36. Becht JM, Le Drian C (2011) Formation of carbon-sulfur and carbon-selenium bonds by palladium-catalyzed decarboxylative cross-couplings of hindered 2, 6-dialkoxybenzoic acids. J Org Chem. https://doi.org/10.1021/jo200344w

    Article  PubMed  Google Scholar 

  37. Beletskaya IP, Ananikov VP (2011) Transition-metal-catalyzed C−S, C−Se, and C−Te bond formation via cross-coupling and atom-economic addition reactions. Chem Rev. https://doi.org/10.1021/cr100347k

    Article  PubMed  Google Scholar 

  38. Laitinen RS, Oilunkaniemi R, Chivers T (2019) Introduction of selenium and tellurium into reaction systems. Phys Sci Rev. https://doi.org/10.1515/9783110529340-001

    Article  Google Scholar 

  39. Pop A, Silvestru C, Silvestru A (2019) Organoselenium and organotellurium compounds containing chalcogen-oxygen bonds in organic synthesis or related processes. Phys Sci Rev. https://doi.org/10.1515/psr-2018-0061

    Article  Google Scholar 

  40. Nogueira CW, Zeni G, Rocha JB (2004) Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev. https://doi.org/10.1021/cr0406559

    Article  PubMed  Google Scholar 

  41. Santi C, Tidei C (2014) In comprehensive organic synthesis II, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  42. Freudendahl DM, Santoro S, Shahzad SA, Santi C, Wirth T (2009) Green chemistry with selenium reagents: development of efficient catalytic reactions. Angew Chem Int Ed. https://doi.org/10.1002/anie.200903893

    Article  Google Scholar 

  43. Ma W, Kaplaneris N, Fang X, Gu L, Mei R, Ackermann L (2020) Chelation-assisted transition metal-catalysed C-H chalcogenylations. Org Chem Front. https://doi.org/10.1039/C9QO01497G

    Article  Google Scholar 

  44. Ren YM, Cai C, Yang RC (2013) Molecular iodine-catalyzed multicomponent reactions: an efficient catalyst for organic synthesis. RSC Adv. https://doi.org/10.1039/C3RA23461D

    Article  Google Scholar 

  45. Liu D, Lei A (2015) Iodine-catalyzed oxidative coupling reactions utilizing C-H and X-H as nucleophiles. Chem Asian J. https://doi.org/10.1002/asia.201403248

    Article  PubMed  PubMed Central  Google Scholar 

  46. Singh FV, Wirth T (2014) Hypervalent iodine-catalyzed oxidative functionalizations including stereoselective reactions. Chem Asian J. https://doi.org/10.1002/asia.201301582

    Article  PubMed  Google Scholar 

  47. Breugst M, von der Heiden D (2018) Mechanisms in iodine catalysis. Chem Eur J. https://doi.org/10.1002/chem.201706136

    Article  PubMed  Google Scholar 

  48. Senadi GC, Guo BC, Hu WP, Wang JJ (2016) Iodine-promoted cyclization of N-propynyl amides and N-allyl amides via sulfonylation and sulfenylation. Chem Commun. https://doi.org/10.1039/C6CC05138C

    Article  Google Scholar 

  49. Siddaraju Y, Prabhu KR (2017) Iodine-catalyzed cross dehydrogenative coupling reaction: sulfenylation of enaminones using dimethyl sulfoxide as an oxidant. J Org Chem. https://doi.org/10.1021/acs.joc.7b00073

    Article  PubMed  Google Scholar 

  50. Wu W, An Y, Li J, Yang S, Zhu Z, Jiang H (2017) Iodine-catalyzed cascade annulation of alkynes with sodium arylsulfinates: assembly of 3-sulfenylcoumarin and 3-sulfenylquinolinone derivatives. Org Chem Front. https://doi.org/10.1039/C7QO00326A

    Article  Google Scholar 

  51. He Y, Liu S, Wen P et al(2016) Iodine-catalyzed regioselective sulfenylation of indoles with thiols in water. ChemistrySelect. https://doi.org/10.1002/slct.201600257

    Article  Google Scholar 

  52. Nandeshwarappa B, Sadashiv S (eds) (2020) Heterocycles—synthesis and biological activities. IntechOpen, London

    Google Scholar 

  53. Vieira AA, Azeredo JB, Godoi M, Santi C, da Silva Junior EN, Braga AL (2015) Catalytic chalcogenylation under greener conditions: A solvent-free sulfur-and seleno-functionalization of olefins via I2/DMSO oxidant system. J Org Chem. https://doi.org/10.1021/jo502621a

    Article  PubMed  Google Scholar 

  54. Shang Z, Chen Q, Xing L, Zhang Y, Wait L, Du Y (2019) in situ Formation of RSCl/ArSeCl and their oxidative coupling with enaminone derivatives under transition-metal free conditions. Adv Synth Catal. https://doi.org/10.1002/adsc.201900940

    Article  Google Scholar 

  55. Meng XJ, Zhong PF, Wang YM, Wang HS, Tang HT, Pan YM (2020) Electrochemical difunctionalization of olefines: access to selenomethyl-substituted cyclic ethers or lactones. Adv Synth Catal. https://doi.org/10.1002/adsc.201901115

    Article  Google Scholar 

  56. Zeng X, Chen L (2019) Organo-selenium mediated regio-and stereoselective iodoselenylation of alkynes in an aqueous medium: simple access to (E)-β-iodoalkenyl selenides. Org Biomol Chem. https://doi.org/10.1039/C9OB00524B

    Article  PubMed  Google Scholar 

  57. Ni P, Tan J, Zhao W, Huang H, Deng GJ (2019) Metal free three-component selenopheno [2, 3-b] indole formation through double C–H selenylation with selenium powder. Adv Synth Catal. https://doi.org/10.1002/adsc.201901023

    Article  Google Scholar 

  58. Ji XM, Zhou SJ, Chen F, Zhang XG, Tang RY (2015) Direct sulfenylation of imidazoheterocycles with disulfides in an iodine-hydrogen peroxide system. Synthesis. https://doi.org/10.1055/s-0034-1379941

    Article  Google Scholar 

  59. Bhalla A, Bari SS, Bhalla J, Khullar S, Mandal S (2016) Facile synthesis of novel halogenated 4-pyrazolylspirocyclic-β-lactams: versatile heterocyclic synthons. Tetrahedron Lett. https://doi.org/10.1016/j.tetlet.2016.05.047

    Article  Google Scholar 

  60. Bhalla A, Modi G, Yadav P, Kumar P, Bari SS, Hundal G (2020) Stereoselective C-3 alkylation of trans-3-phenylsulfonyl-β-lactams with organic halides to access C-3 substituted β-lactams using sulfonyl moiety as an activating group. Tetrahedron Lett. https://doi.org/10.1016/j.tetlet.2020.152098

    Article  Google Scholar 

  61. Ghanghas P, Sharma M, Desai D et al (2022) Selenium-based novel epigenetic regulators offer effective chemotherapeutic alternative with wider safety margins in experimental colorectal cancer. Biol Trace Elem Res. https://doi.org/10.1007/s12011-021-02659-5

    Article  PubMed  Google Scholar 

  62. Kaur R, Desai D, Amin S et al (2023) Selenocoxib-3, a novel anti-inflammatory therapeutic effectively resolves colitis. Mol Cell Biochem. https://doi.org/10.1007/s11010-022-04532-y

    Article  PubMed  PubMed Central  Google Scholar 

  63. Garg A, Desai D, Bhalla A, Thakur S, Rastogi P, Kaushal N (2023) SelSA-1, a novel HDAC inhibitor demonstrates enhanced chemotherapeutic potential by redox modulation. Sci Rep. https://doi.org/10.1038/s41598-023-36555-w

    Article  PubMed  PubMed Central  Google Scholar 

  64. Narula D, Bari SS, Singh G, Sharma R, Garg A, Bhalla A (2023) Serendipitous discovery of a regioselective synthesis of novel benzoyloxy substituted phenyl/benzyl-sulfanyl/selenylbisesters, 3-benzoyloxy-3-(phenylsulfanyl)-β-lactams and their antimicrobial evaluation. J Sulfur Chem. https://doi.org/10.1080/17415993.2023.2233652

    Article  Google Scholar 

  65. Saini P, Bari SS, Yadav P, Khullar S, Mandal SK, Bhalla A (2022) Synthesis of C2-Formamide(thiophene)pyrazolyl- C4’-carbaldehyde and their transformation to Schiff’s bases and stereoselective trans -β-lactams: mechanistic and theoretical insights. ChemistrySelect. https://doi.org/10.1002/slct.202202172

    Article  Google Scholar 

  66. Saini P, Thakur S, Garg A, Bari SS, Bhalla A (2023) Stereoselective synthesis of trans -benzo[d ]oxazolyl)phenyl substituted β-lactams decorated with C-3 thio/seleno rich motifs: synthetic intermediates for diverse heterocycles. J Sulfur Chem. https://doi.org/10.1080/17415993.2023.2206968

    Article  Google Scholar 

  67. Azeredo JB, Braga AL, Santi C (2020) Solvent-free asymmetric alkoxy-selenylation of styrenes using I2/DMSO catalytic system. In: 1st International Electronic Conference on Catalysis Sciences. https://doi.org/10.3390/ECCS2020-07563

  68. Yao J, Hu D, Zhang J-Q et al (2022) Ring-opening selenation of cyclopropanol for the selective synthesis of β-hydroxy-substituted selenylated ketones. J Org Chem. https://doi.org/10.1021/acs.joc.2c02004

    Article  PubMed  PubMed Central  Google Scholar 

  69. Maity P, Ranu BC (2017) Iodine-catalyzed synthesis of chalcogenophenes by the reaction of 1, 3-dienyl bromides and potassium selenocyanate/potassium sulfide (KSeCN/K2S). Adv Synth Catal. https://doi.org/10.1002/adsc.201701232

    Article  Google Scholar 

  70. Chen W, Zhu X, Wang F, Yang Y, Deng G, Liang Y (2020) Iodine-catalyzed three-component cascade reaction for the synthesis of substituted 2-Phenylnaphtho [1, 3] selenazoles under transition-metal-free conditions. J Org Chem. https://doi.org/10.1021/acs.joc.9b03154

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kim Y, Kim DY (2019) Synthesis of β-selenylated ketones via iodine-mediated selenylation/1, 2-carbon migration sequences of alkenyl alcohols. Tetrahedron Lett. https://doi.org/10.1016/j.tetlet.2019.05.014

    Article  Google Scholar 

  72. Zhong S, Liu Y, Cao X, Wan JP (2017) KIO3-catalyzed domino C (sp2)-H bond sulfenylation and C−N bond oxygenation of enaminones toward the synthesis of 3-sulfenylated chromones. ChemCatChem. https://doi.org/10.1002/cctc.201601273

    Article  Google Scholar 

  73. Rafique J, Saba S, Schneider AR, Franco MS, Silva SM, Braga AL (2017) Metal-and solvent-free approach to access 3-Se/S-chromones from the cyclization of enaminones in the presence of dichalcogenides catalyzed by KIO3. ACS Omega. https://doi.org/10.1021/acsomega.7b00445

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yu JM, Cai C (2018) Iodine (III)-mediated intramolecular sulfeno-and selenofunctionalization of β, γ-unsaturated tosyl hydrazones and oximes. Org Biomol Chem. https://doi.org/10.1039/C7OB02892J

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang PF, Yi W, Ling Y, Ming L, Liu GQ, Zhao Y (2021) Preparation of selenofunctionalized heterocycles via iodosobenzene-mediated intramolecular selenocyclizations of olefins with diselenides. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2021.02.050

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zhou CF, Zhang YQ, Ling Y, et al (2022) Time-economical synthesis of selenofunctionalized heterocycles via I2O5-mediated selenylative heterocyclization. Org Biomol Chem. https://doi.org/10.1039/D1OB02196F

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tao S, Huo A, Gao Y, Zhang X, Yang J, Du Y (2022) PhICl2-Mediated regioselective and electrophilic oxythio/selenocyanation of o-(1-alkynyl)benzoates: access to biologically active s/secn-containing isocoumarins. Front Chem. https://doi.org/10.3389/fchem.2022.859995

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhang HY, Zeng TT, Xie ZB et al (2022) Aerial oxygen-driven selenocyclization of o-vinylanilides mediated by coupled Fe3+/Fe2+ and I2/I redox cycles. Molecules. https://doi.org/10.3390/molecules27217386

    Article  PubMed  PubMed Central  Google Scholar 

  79. Fang JD, Yan XB, Zhou L, Wang YZ, Liu XY (2019) Synthesis of 3-organoselenyl-2H-coumarins from propargylic aryl ethers via oxidative radical cyclization. Adv Synth Catal. https://doi.org/10.1002/adsc.201801565

    Article  Google Scholar 

  80. Ai Z, Xiao J, Li Y, Guo B, Du Y, Zhao K (2020) Metal-free synthesis of 3-chalcogenyl chromones from alkynyl aryl ketones and diorganyl diselenides/disulfides mediated by PIFA. Org Chem Front. https://doi.org/10.1039/D0QO01175D

    Article  Google Scholar 

  81. Win KM, Sonawane AD, Koketsu M (2021) Synthesis of selenated tetracyclic indoloazulenes via iodine and diorganyl diselenides. Org Biomol Chem. https://doi.org/10.1039/D1OB00268F

    Article  PubMed  Google Scholar 

  82. Saba S, Rafique J, Braga AL (2016) DMSO/iodine-catalyzed oxidative C-Se/C-S bond formation: a regioselective synthesis of unsymmetrical chalcogenides with nitrogen-or oxygen-containing arenes. Catal Sci Technol. https://doi.org/10.1039/C5CY01503K

    Article  Google Scholar 

  83. Zhou Z, He X (2018) A simple method for the preparation of arylselanyl anilines. Synth Commun. https://doi.org/10.1080/00397911.2018.1513531

    Article  Google Scholar 

  84. Saba S, Rafique J, Braga AL (2015) Synthesis of unsymmetrical diorganyl chalcogenides under greener conditions: use of an iodine/DMSO system, solvent-and metal-free approach. Adv Synth Catal. https://doi.org/10.1002/adsc.201500024

    Article  Google Scholar 

  85. Kaushik N, Kaushik N, Attri P, Kumar N, Kim C, Verma A, Choi E (2013) Biomedical importance of indoles. Molecules. https://doi.org/10.3390/molecules18066620

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chuai H, Zhang SQ, Bai H et al (2021) Small molecule selenium-containing compounds: recent development and therapeutic applications. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2021.113621

    Article  PubMed  Google Scholar 

  87. Zhang S, An B, Li J et al (2017) Synthesis and evaluation of selenium-containing indole chalcone and diarylketone derivatives as tubulin polymerization inhibition agents. Org Biomol Chem. https://doi.org/10.1039/C7OB01655G

    Article  PubMed  PubMed Central  Google Scholar 

  88. Azeredo JB, Godoi M, Martins GM, Silveira CC, Braga AL (2014) A solvent-and metal-free synthesis of 3-chacogenyl-indoles employing DMSO/I2 as an eco-friendly catalytic oxidation system. J Org Chem. https://doi.org/10.1021/jo5000779

    Article  PubMed  Google Scholar 

  89. Wen Z, Xu J, Wang Z et al (2015) 3-(3, 4, 5-Trimethoxyphenylselenyl)-1H-indoles and their selenoxides as combretastatin A-4 analogs: microwave-assisted synthesis and biological evaluation. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2014.11.024

    Article  PubMed  Google Scholar 

  90. Chen SQ, Wang QM, Xu PC, Ge SP, Zhong P, Zhang XH (2016) Iodine-promoted selective 3-selanylation and 3-sulfenylation of indoles with dichalcogenides under mild conditions. Phosphorus Sulfur Silicon Relat Elem. https://doi.org/10.1080/10426507.2014.999068

    Article  Google Scholar 

  91. Luz EQ, Seckler D, Araujo JS et al (2019) Fe (III)-catalyzed direct C3 chalcogenylation of indole: the effect of iodide ions. Tetrahedron. https://doi.org/10.1016/j.tet.2019.01.037

    Article  Google Scholar 

  92. Song WH, Shi J, Chen X, Song G (2020) Silver-catalyzed remote C5-H selenylation of indoles. J Org Chem. https://doi.org/10.1021/acs.joc.0c00921

    Article  PubMed  PubMed Central  Google Scholar 

  93. Vieira BM, Thurow S, Brito J et al (2015) Sonochemistry: an efficient alternative to the synthesis of 3-selanylindoles using CuI as catalyst. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2015.05.012

    Article  PubMed  Google Scholar 

  94. Yang Y, Li W, Ying B, Liao H, Shen C, Zhang P (2016) Catalyst-triggered highly selective C−S and C−Se bond formation by C−H activation. ChemCatChem. https://doi.org/10.1002/cctc.201600589

    Article  Google Scholar 

  95. Gao YT, Liu SD, Cheng L, Liu L (2021) A fast and direct iodide-catalyzed oxidative 2-selenylation of tryptophan. Chem Commun. https://doi.org/10.1039/D1CC00700A

    Article  Google Scholar 

  96. Zhang X, Wang C, Jiang H, Sun L (2018) Convenient synthesis of selenyl-indoles via iodide ion-catalyzed electrochemical C-H selenation. Chem Commun. https://doi.org/10.1039/C8CC04543G

    Article  Google Scholar 

  97. Ansari AJ, Sharma S, Pathare RS, Gopal K, Sawant DM, Pardasani RT (2016) Solvent-free multicomponent synthesis of biologically-active fused-imidazo heterocycles catalyzed by reusable Yb(OTf)3 under microwave irradiation. ChemistrySelect. https://doi.org/10.1002/slct.201600241

    Article  Google Scholar 

  98. Chitrakar R, Rawat D, Sistla R, Vadithe LN, Subbarayappa A (2021) Design, synthesis and anticancer activity of sulfenylated imidazo-fused heterocycles. Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2021.128307

    Article  PubMed  Google Scholar 

  99. Bagdi AK, Hajra A (2016) Design, synthesis, and functionalization of imidazoheterocycles. Chem Rec. https://doi.org/10.1002/tcr.201600057

    Article  PubMed  Google Scholar 

  100. Akritopoulou-Zanze I, Wakefield BD, Gasiecki A et al (2011) Scaffold oriented synthesis, Part 4: design, synthesis and biological evaluation of novel 5-substituted indazoles as potent and selective kinase inhibitors employing heterocycle forming and multicomponent reactions. Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2011.01.001

    Article  PubMed  Google Scholar 

  101. Thakur A, Pereira G, Patel C, Chauhan V, Dhaked RK, Sharma A (2020) Design, one-pot green synthesis and antimicrobial evaluation of novel imidazopyridine bearing pyran bis-heterocycles. J Mol Struct. https://doi.org/10.1016/j.molstruc.2020.127686

    Article  Google Scholar 

  102. Bavetsias V, Crumpler S, Sun C et al (2012) Optimization of imidazo[4,5- b ]pyridine-based kinase inhibitors: identification of a dual flt3/aurora kinase inhibitor as an orally bioavailable preclinical development candidate for the treatment of acute myeloid leukemia. J Med Chem. https://doi.org/10.1021/jm300952s

    Article  PubMed  PubMed Central  Google Scholar 

  103. Teli P, Sahiba N, Sethiya A, Soni J, Agarwal S (2022) Imidazole derivatives: impact and prospects in antiviral drug discovery. Imidazole-Based Drug Discovery. https://doi.org/10.1016/B978-0-323-85479-5.00001-0

  104. Rafique J, Saba S, Rosário AR, Braga AL (2016) Regioselective, solvent-and metal-free chalcogenation of imidazo [1, 2-a] pyridines by employing I2/DMSO as the catalytic oxidation system. Chem Eur J. https://doi.org/10.1002/chem.201600800

    Article  PubMed  Google Scholar 

  105. Yi R, Liu S, Gao H, Liang Z, Xu X, Li N (2020) Iodine-promoted direct thiolation (selenylation) of imidazole with disulfides (diselenide): a convenient and metal-free protocol for the synthesis of 2-arylthio (seleno) imidazole. Tetrahedron. https://doi.org/10.1016/j.tet.2020.130951

    Article  Google Scholar 

  106. Dey A, Hajra A (2019) Iodine-catalyzed selenylation of 2 H-indazole. J Org Chem. https://doi.org/10.1021/acs.joc.9b02199

    Article  PubMed  Google Scholar 

  107. Obah Kosso AR, Kabri Y, Broggi J, Redon S, Vanelle P (2020) Sequential regioselective diorganochalcogenations of imidazo [1, 2-a] pyrimidines using I2/H3PO4 in dimethylsulfoxide. J Org Chem. https://doi.org/10.1021/acs.joc.9b02963

    Article  PubMed  Google Scholar 

  108. Bettanin L, Saba S, Doerner CV et al(2018) NH4I-catalyzed chalcogen (S/Se)-functionalization of 5-membered N-heteroaryls under metal-free conditions. Tetrahedron. https://doi.org/10.1016/j.tet.2018.05.084

    Article  Google Scholar 

  109. Rafique J, Farias G, Saba S et al (2020) Selenylated-oxadiazoles as promising DNA intercalators: synthesis, electronic structure, DNA interaction and cleavage. Dyes Pigm. https://doi.org/10.1016/j.dyepig.2020.108519

    Article  PubMed  PubMed Central  Google Scholar 

  110. Sarmah M, Chutia K, Dutta D, Gogoi P (2022) Overview of coumarin-fused-coumarins: synthesis, photophysical properties and their applications. Org Biomol Chem. https://doi.org/10.1039/D1OB01876K

    Article  PubMed  Google Scholar 

  111. Stefanachi A, Leonetti F, Pisani L, Catto M, Carotti A (2018) Coumarin: a natural, privileged and versatile scaffold for bioactive compounds. Molecules. https://doi.org/10.3390/molecules23020250

    Article  PubMed  PubMed Central  Google Scholar 

  112. Phutdhawong W, Chuenchid A, Taechowisan T, Sirirak J, Phutdhawong WS (2021) Synthesis and biological activity evaluation of coumarin-3-carboxamide derivatives. Molecules. https://doi.org/10.3390/molecules26061653

    Article  PubMed  PubMed Central  Google Scholar 

  113. Annunziata F, Pinna C, Dallavalle S, Tamborini L, Pinto A (2020) An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities. Int J Mol Sci. https://doi.org/10.3390/ijms21134618

    Article  PubMed  PubMed Central  Google Scholar 

  114. Sharifi-Rad J, Cruz-Martins N, López-Jornet P et al (2021) Natural coumarins: exploring the pharmacological complexity and underlying molecular mechanisms. Oxid Med Cell Longev. https://doi.org/10.1155/2021/6492346

    Article  PubMed  PubMed Central  Google Scholar 

  115. Xu L, Zhao XY, Wu YL, Zhang W (2015) The study on biological and pharmacological activity of coumarins. https://doi.org/10.2991/ap3er-15.2015.33

  116. Wu Y, Chen JY, Liao HR et al (2021) Electrochemical transient iodination and coupling for selenylated 4-anilinocoumarin synthesis. Green Synth Catal. https://doi.org/10.1016/j.gresc.2021.03.006

    Article  Google Scholar 

  117. Song Z, Ding C, Wang S et al (2020) Metal-free regioselective C-H chalcogenylation of coumarins/(hetero) arenes at ambient temperature. Chem Commun. https://doi.org/10.1039/C9CC09001K

    Article  Google Scholar 

  118. Mani R, Natesan V (2018) Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochem. https://doi.org/10.1016/j.phytochem.2017.09.016

    Article  Google Scholar 

  119. Bahadori M, Baharara J, Amini E (2016) Anticancer properties of chrysin on colon cancer cells, in vitro and in vivo with modulation of caspase-3, -9, bax and sall4. Iran J Biotechnol. https://doi.org/10.15171/ijb.1374

    Article  PubMed  PubMed Central  Google Scholar 

  120. Song JH, Kwon BE, Jang H et al (2015) Antiviral activity of chrysin derivatives against coxsackievirus b3 in vitro and in vivo. Biomol Ther. https://doi.org/10.4062/biomolther.2015.095

    Article  Google Scholar 

  121. Suresh Babu K, Hari Babu T, Srinivas PV, Hara Kishore K, Murthy USN, Rao JM (2006) Synthesis and biological evaluation of novel C (7) modified chrysin analogues as antibacterial agents. Bio Med Chem Lett. https://doi.org/10.1016/j.bmcl.2005.09.009

    Article  Google Scholar 

  122. Omonga N, Zia Z, Ghanbour H et al (2021) Facile synthesis and biological evaluation of chrysin derivatives. J Chem Res. https://doi.org/10.1177/17475198211057467

    Article  Google Scholar 

  123. Wang QQ, Cheng N, Yi WB, Peng SM, Zou XQ (2014) Synthesis, nitric oxide release, and α-glucosidase inhibition of nitric oxide donating apigenin and chrysin derivatives. Bioorg Med Chem 22(5):1515–1521. https://doi.org/10.1016/j.bmc.2014.01.038

    Article  CAS  PubMed  Google Scholar 

  124. Byun EB, Song HY, Kim WS et al (2021) Chrysin derivative cm1 and exhibited anti-inflammatory action by upregulating toll-interacting protein expression in lipopolysaccharide-stimulated RAW264.7 macrophage cells. Molecules. https://doi.org/10.3390/molecules26061532

    Article  PubMed  PubMed Central  Google Scholar 

  125. Fonseca SF, Padilha NB, Thurow S et al (2017) Ultrasound-promoted copper-catalyzed synthesis of bis-arylselanyl chrysin derivatives with boosted antioxidant and anticancer activities. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2017.06.007

    Article  PubMed  Google Scholar 

  126. Kaur T, Bhandari DD (2022) Annotated review on various biological activities of quinoline molecule. Biointerface Res Appl Chem. https://doi.org/10.33263/BRIAC134.355

    Article  Google Scholar 

  127. de la Guardia C, Stephens D, Dang H, Quijada M, Larionov O, Lleonart R (2018) Antiviral activity of novel quinoline derivatives against dengue virus serotype 2. Molecules. https://doi.org/10.3390/molecules23030672

    Article  PubMed  PubMed Central  Google Scholar 

  128. Guan YF, Liu XJ, Yuan XY et al (2021) Design, synthesis, and anticancer activity studies of novel quinoline-chalcone derivatives. Molecules. https://doi.org/10.3390/molecules26164899

    Article  PubMed  PubMed Central  Google Scholar 

  129. Zajdel P, Marciniec K, Maślankiewicz A et al (2013) Antidepressant and antipsychotic activity of new quinoline- and isoquinoline-sulfonamide analogs of aripiprazole targeting serotonin 5-HT1A/5-HT2A/5-HT7 and dopamine D2/D3 receptors. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2012.11.042

    Article  PubMed  Google Scholar 

  130. Kumar Gupta S, Mishra A (2016) Synthesis, characterization & screening for anti-inflammatory & analgesic activity of quinoline derivatives bearing azetidinones scaffolds. Antiinflamm Antiallergy Agents Med Chem 15(1):31–43. https://doi.org/10.2174/1871523015666160210124545

    Article  CAS  Google Scholar 

  131. Herraiz T, Guillén H, González-Peña D, Arán VJ (2019) Antimalarial quinoline drugs inhibit β-hematin and increase free hemin catalyzing peroxidative reactions and inhibition of cysteine proteases. Sci Rep. https://doi.org/10.1038/s41598-019-51604-z

    Article  PubMed  PubMed Central  Google Scholar 

  132. Kumar V, Banert K, Ray D, Saha B (2019) An atom-economical and regioselective metal-free C-5 chalcogenation of 8-aminoquinolines under mild conditions. Org Biomol Chem. https://doi.org/10.1039/C9OB02235J

    Article  PubMed  Google Scholar 

  133. Beukeaw D, Noikham M, Yotphan S (2019) Iodine/persulfate-promoted site-selective direct thiolation of quinolones and uracils. Tetrahedron. https://doi.org/10.1016/j.tet.2019.130537

    Article  Google Scholar 

  134. Liu X, Wang Y, Song D, Wang Y, Cao H (2020) Electrochemical regioselective selenylation/oxidation of N-alkylisoquinolinium salts via double C (sp 2)-H bond functionalization. Chem Commun. https://doi.org/10.1039/D0CC06778D

    Article  Google Scholar 

  135. Ghosh P, Nandi AK, Chhetri G, Das S (2018) Generation of ArS-and ArSe-substituted 4-quinolone derivatives using sodium iodide as an inducer. J Org Chem. https://doi.org/10.1021/acs.joc.8b01426

    Article  PubMed  PubMed Central  Google Scholar 

  136. Sharma V, Chitranshi N, Agarwal AK (2014) Significance and biological importance of pyrimidine in the microbial world. Int J Med Chem. https://doi.org/10.1155/2014/202784

    Article  PubMed  PubMed Central  Google Scholar 

  137. Zarenezhad E, Farjam M, Iraji A (2021) Synthesis and biological activity of pyrimidines-containing hybrids: focusing on pharmacological application. J Mol Struct. https://doi.org/10.1016/j.molstruc.2020.129833

    Article  Google Scholar 

  138. Pałasz A, Cież D (2015) In search of uracil derivatives as bioactive agents. Uracils and fused uracils. Synthesis, biological activity and applications. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2014.10.008

    Article  PubMed  Google Scholar 

  139. Kezin VA, Matyugina ES, Novikov MS et al (2022) New derivatives of 5-substituted uracils: potential agents with a wide spectrum of biological activity. Molecules. https://doi.org/10.3390/molecules27092866

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ghosh P, Chhetri G, Das S (2021) Metal free C-3 chalcogenation (sulfenylation and selenylation) of 4 H-pyrido [1, 2-a] pyrimidin-4-ones. RSC Adv. https://doi.org/10.1039/D1RA00834J

    Article  PubMed  PubMed Central  Google Scholar 

  141. Chen J, Xiao Y, You X, Li S, Fu Y, Ouyang Y (2023) Electrochemical oxidative selenation of 4 h -pyrido-[1,2- a ]-pyrimidin-4-ones with diorganyldiselenides. ChemistrySelect. https://doi.org/10.1002/slct.202203879

    Article  Google Scholar 

  142. Chen JY, Zhong CT, Gui QW et al (2021) Practical and sustainable approach for clean preparation of 5-organylselanyl uracils. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2020.09.034

    Article  PubMed  PubMed Central  Google Scholar 

  143. Li XD, Gao YT, Sun YJ et al (2019) A NaI/H2O2-mediated sulfenylation and selenylation of unprotected uracil and its derivatives. Org lett. https://doi.org/10.1021/acs.orglett.9b02183

    Article  PubMed  PubMed Central  Google Scholar 

  144. Dai H, Li YQ, Du D et al (2008) Synthesis and biological activities of novel pyrazole oxime derivatives containing a 2-chloro-5-thiazolyl moiety. J Agric Food Chem. https://doi.org/10.1021/jf802429x

    Article  PubMed  Google Scholar 

  145. Assali M, Abualhasan M, Sawaftah H, Hawash M, Mousa A (2020) Synthesis, biological activity, and molecular modeling studies of pyrazole and triazole derivatives as selective COX-2 inhibitors. J Chem. https://doi.org/10.1155/2020/6393428

    Article  Google Scholar 

  146. Sayed AEDH, Zaki RM, El-Dean AMK, Abdulrazzaq AY (2015) The biological activity of new thieno[2,3-c]pyrazole compounds as anti-oxidants against toxicity of 4-nonylphenol in Clarias gariepinus. Toxicol Rep. https://doi.org/10.1016/j.toxrep.2015.10.008

    Article  PubMed  PubMed Central  Google Scholar 

  147. Faria JV, Vegi PF, Miguita AGC, dos Santos MS, Boechat N, Bernardino AMR (2017) Recently reported biological activities of pyrazole compounds. Bioorg Med Chem. https://doi.org/10.1016/j.bmc.2017.09.035

    Article  PubMed  Google Scholar 

  148. Wang J, Liu Y, Yan J (2018) Iodine-mediated synthesis of 4-selanylpyrazoles. New J Chem. https://doi.org/10.1039/C8NJ02629G

    Article  Google Scholar 

  149. Marinescu M, Popa C-V (2022) Pyridine compounds with antimicrobial and antiviral activities. Int J Mol Sci 23(10):5659. https://doi.org/10.3390/ijms23105659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. De S, Kumar SKA, Shah SK et al (2022) Pyridine: the scaffolds with significant clinical diversity. RSC Adv. https://doi.org/10.1039/D2RA01571D

    Article  PubMed  PubMed Central  Google Scholar 

  151. Islam MdB, Islam MdI, Nath N et al (2023) Recent advances in pyridine scaffold: focus on chemistry, synthesis, and antibacterial activities. Biomed Res Int. https://doi.org/10.1155/2023/9967591

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ge W, Zhu X, Wei Y (2013) Aerobic multicomponent tandem synthesis of 3-sulfenylimidazo [1, 2-a] pyridines from ketones, 2-aminopyridines, and disulfides. Eur J Org Chem. https://doi.org/10.1002/ejoc.201300905

    Article  Google Scholar 

  153. Jiang N, Fang Y, Fang Y, Wang SY, Ji SJ (2019) Iodine-promoted one pot reaction of pyridin-2-amine with arylmethyl ketone and selenosulfonate: synthesis of 3-(alkylselanyl)-2-arylimidazo [1, 2-a] pyridine under transition-metal free conditions. Org Chem Front. https://doi.org/10.1039/C8QO01245H

    Article  Google Scholar 

  154. Li J, Liu X, Deng J et al (2020) Electrochemical diselenylation of indolizines via intermolecular C–Se formation with 2-methylpyridines, α-bromoketones and diselenides. Chem Commun. https://doi.org/10.1039/C9CC08784B

    Article  Google Scholar 

  155. Bellina F, Rossi R (2006) Synthesis and biological activity of pyrrole, pyrroline and pyrrolidine derivatives with two aryl groups on adjacent positions. Tetrahedron 62(31):7213–7256. https://doi.org/10.1016/j.tet.2006.05.024

    Article  CAS  Google Scholar 

  156. Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P (2015) Pyrrole: a resourceful small molecule in key medicinal hetero-aromatics. RSC Adv. https://doi.org/10.1039/C4RA15710A

    Article  Google Scholar 

  157. Ivan BC, Barbuceanu SF, Hotnog CM et al (2022) New pyrrole derivatives as promising biological agents: design, synthesis, characterization, in silico, and cytotoxicity evaluation. Int J Mol Sci. https://doi.org/10.3390/ijms23168854

    Article  PubMed  PubMed Central  Google Scholar 

  158. Li Petri G, Spanò V, Spatola R et al (2020) Bioactive pyrrole-based compounds with target selectivity. Eur J of Med Chem. https://doi.org/10.1016/j.ejmech.2020.112783

    Article  Google Scholar 

  159. Peglow TJ, Costa GP, Duarte LF et al (2019) Ultrasound-promoted one-pot synthesis of mono-or bis-substituted organylselanyl pyrroles. J Org Chem. https://doi.org/10.1021/acs.joc.9b00405

    Article  PubMed  Google Scholar 

  160. Silva LT, Azeredo JB, Saba S, Rafique J, Bortoluzzi AJ, Braga AL (2017) Solvent-and metal-free chalcogenation of bicyclic arenes using I2/DMSO as non-metallic catalytic system. Eur J Org Chem. https://doi.org/10.1002/ejoc.201700744

    Article  Google Scholar 

  161. Jana A, Panday AK, Mishra R, Parvin T, Choudhury LH (2017) Synthesis of thio and selenoethers of cyclic β-Hydroxy carbonyls and amino uracils: a metal-free regioselective I2/DMSO mediated reaction. ChemistrySelect. https://doi.org/10.1002/slct.201702066

    Article  Google Scholar 

  162. Rodrigues J, Saba S, Joussef AC, Rafique J, Braga AL (2018) KIO3-Catalyzed C (sp2)-H bond selenylation/sulfenylation of (Hetero) arenes: synthesis of chalcogenated (Hetero) arenes and their evaluation for anti-Alzheimer activity. Asian J Org Chem. https://doi.org/10.1002/ajoc.201800346

    Article  Google Scholar 

  163. Ding C, Yu Y, Yu Q et al (2018) NIS/TBHP induced regioselective selenation of (hetero) arenes via direct C−H functionalization. ChemCatChem. https://doi.org/10.1002/cctc.201801548

    Article  Google Scholar 

  164. Meirinho AG, Pereira VF, Martins GM et al (2019) Electrochemical oxidative C (sp2)-H bond selenylation of activated arenes. Eur J Org Chem. https://doi.org/10.1002/ejoc.201900992

    Article  Google Scholar 

  165. Gu L, Fang X, Weng Z, Lin J, He M, Ma W (2019) PIDA-promoted selective C5 C-H selenylations of indolines via weak interactions. Adv Synth Catal. https://doi.org/10.1002/adsc.201900766

    Article  Google Scholar 

Download references

Funding

A.B. gratefully acknowledges the financial support for this work from the Department of Science and Technology (DST), New Delhi, Government of India, Project No. SR/FT/CS-037/2010 dated 28-10-2010, FIST-II/PURSE-II (DST), and UGC-CAS, Panjab University, Chandigarh. P.K. acknowledges the financial support from the Council of Scientific and Industrial Research (CSIR) New Delhi vides Award No- F.No.09/135(0823)2018-EMR-I.

Author information

Authors and Affiliations

Authors

Contributions

Pankaj Kumar: conceptualization, data collection and interpretation, and original draft preparation. Aman Bhalla: supervision, reviewing, and editing.

Corresponding author

Correspondence to Aman Bhalla.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Bhalla, A. Reaction Pattern and Mechanistic Aspects of Iodine and Iodine-Based Reagents in Selenylation of Aliphatic, Aromatic, and (Hetero)Cyclic Systems. Top Curr Chem (Z) 382, 12 (2024). https://doi.org/10.1007/s41061-024-00459-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-024-00459-8

Keywords

Navigation