Skip to main content
Log in

Substituent and solvent effects on the rate of the reaction of 2-methyl-4-phenyl-thiazole ethiodide with substituted benzaldehydes

Substituenten- und Lösungsmittel-Effekte auf die Geschwindigkeit der Reaktion zwischen 2-Methyl-4-phenylthiazol-ethiodid und substituierten Benzaldehyden

  • Anorganische und Physikalische Chemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Abstract

Condensation of 2-methyl-4-phenyl-thiazole ethiodide (1) with aromatic aldehydes in presence of piperidine as base catalyst has been studied kinetically at different temperatures. The rate in presence of low concentration of piperidine (<0.5M) is found to be represented by the third order equationv=k′ [1] [aldehyde] [piperidine]. On the other hand the rate in presence of ≥1.013M piperidine is represented by the second-order equation:v=k′ [1] [aldehyde]. It is concluded from the kinetic results that the dehydration step of the intermediate aldol compound is the rate determining step of the reaction. The dependence of the mechanism of the reaction and the thermodynamic parameters of activation on the molecular structure of the various aromatic aldehydes used is discussed. In various organic solvents, the rate of the reaction increases as the dielectric constant of the medium is increased. The energy of activation and the thermodynamic parameters of activation were calculated and discussed in terms of solvent properties.

Zusammenfassung

Die Kinetik dieser Kondensation wurde bei verschiedenen Piperidinkonzentrationen (basischer Katalysator), unter Variation der Temperatur und in Abhängigkeit von der Polarität des Lösungsmittels für verschiedene substituierte Benzaldehyde untersucht. Bei niedriger Piperidinkonzentration gehorcht die Reaktion einer Gleichung dritter Ordnung:v=k′ [Thiazo] [Ald.] [Pip.]; bei großer Konzentration (≥1.013M) gilt eine Gleichung zweiter Ordnung:v=k′ [Thizol] [Ald.]. Es wird ein Mechanismus vorgeschlagen, wobei der geschwindigkeitsbestimmende Schritt die Dehydratisierung des intermediär gebildeten Aldols ist. Aktivierungsenergien und andere thermodynamische Parameter wurden bestimmt und im Hinblick auf die Lösungsmittelpolarität diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kaufmann andL. G. Vallette; Ber.45, 1736 (1912).

    Google Scholar 

  2. I. M. Issa, E. M. Diefalah, M. R. Mahmoud, Z. H. Khalil, andR. Abd-ElHamide, Indian J. of Chemistry14 B, 296 (1976).

    Google Scholar 

  3. A. Hantzsch, Ann. Chem.250, 269 (1889).

    Google Scholar 

  4. A. P. Phillips, J. Org. Chem.12, 333 (1947).

    Google Scholar 

  5. Fr. Schuster, Ber.25, 2398 (1892).

    Google Scholar 

  6. J. E. Leffler, J. Org. Chem.20, 1202 (1955).

    Google Scholar 

  7. J. G. Kirkwood, J. Chem. Phys.2, 351 (1934).

    Google Scholar 

  8. S. Glasston, K. J. Laidler, andH. Eyring, The Theory of Rate Process. New York; McGraw-Hill. 1941.

    Google Scholar 

  9. F. Franks andD. J. G. Ives, Quart. Rev.20, 1 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmoud, M.R., El-Kashef, H.M.S. & El-Nady, A.M. Substituent and solvent effects on the rate of the reaction of 2-methyl-4-phenyl-thiazole ethiodide with substituted benzaldehydes. Monatshefte für Chemie 111, 657–669 (1980). https://doi.org/10.1007/BF00903320

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00903320

Keywords

Navigation