Skip to main content
Log in

Mechanism of solid-state eutectoid transformation in an aluminium-zinc alloy

  • Contributed Papers
  • Published:
Applied physics Aims and scope Submit manuscript

Abstract

The growth rate of pearlite during isothermal transformation of an aluminium-zinc eutectoid has been determined experimentally. Different theoretical models, assuming either volume or boundary diffusion of zinc to be a rate controlling mechanism for the eutectoid transformation, have been applied. With volume diffusion models, the calculated growth rates were lower than the experimental growth rates by a factor of three orders of magnitude. Reasonable agreement between the calculated and experimental growth rates has been obtained on applying the boundary diffusion models. The activation energy for boundary diffusion of zinc in the aluminium-zinc alloy was estimated to be ≅11.6 kcals/mole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.Zener: Trans. Am. Inst. Min. Metall. Eng.167, 550 (1946)

    Google Scholar 

  2. M.Hillert: Jerkont. Ann.141, 757 (1957)

    Google Scholar 

  3. M. Hillert: “The Mechanism of Phase Transformations in Crystalline Solids”; Institute of Metals Monographs No.33 (1969) pp. 231–47

    Google Scholar 

  4. J.W.Cahn, W.C.Hagel:Decomposition of Austenite by Diffusional Processes (Interscience Publishers, New York 1962) p. 131

    Google Scholar 

  5. W.H.Brandt: J. Appl. Phys.16, 139 (1945)

    Article  MathSciNet  Google Scholar 

  6. J.M.Shapiro, J.S.Kirkaldy: Acta Metall.16, 579 (1968)

    Article  Google Scholar 

  7. G.Bolze, M.P.Puls, J.S.Kirkaldy: Acta Metall.20, 73 (1972)

    Article  Google Scholar 

  8. L.R.Wolff: “Directional Eutectoid Decomposition in Multicomponent Systems”, Ph. D. Thesis, Eindhoven, The Netherland (1977)

  9. F.M.A.Carpay: Int. Metall. Rev.225, 1 (1978)

    Google Scholar 

  10. R.D.Garwood, A.D.Hopkins: J. Inst. Metals81, 407 (1952–53)

    Google Scholar 

  11. M.Hansen:Constitution of Binary Alloys. (McGraw-Hill (New York 1958) p. 148

    Google Scholar 

  12. D.Cheetham, F.R.Sale: Acta Metall.22, 333 (1974)

    Article  Google Scholar 

  13. J.E.Hilliard, B.L.Averbach, MorrisCohen: Acta Metall.7, 86 (1959)

    Article  Google Scholar 

  14. H.I.Aaronson, J.B.Clark: Acta Metall.16, 845 (1968)

    Article  Google Scholar 

  15. N.A.Gjostein:Physicochemical Measurements in Metals Research, p. 2, Interscience Publishers (New York 1970) p. 436

    Google Scholar 

  16. N.A.Razik, G.W.Lorimer, N.Ridley: Acta Metall.22, 1249 (1974)

    Article  Google Scholar 

  17. N.A.Razik, G.W.Lorimer, N.Ridley: Metall. Trans.7A, 209 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razik, N.A., Maksoud, S.A. Mechanism of solid-state eutectoid transformation in an aluminium-zinc alloy. Appl. Phys. 19, 331–335 (1979). https://doi.org/10.1007/BF00900477

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00900477

PACS

Navigation