Skip to main content
Log in

Assessment of left ventricular dysfunction by nuclear cardiology

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

Nuclear cardiology techniques may be of help in evaluating the patient with symptoms of congestive heart failure and ventricular dysfunction in two respects: quantification of functional parameters by radionuclide angiography, and differentiation of viable from nonviable myocardium by perfusion and metabolic imaging. Left ventricular ejection fraction and volumes can be accurately assessed by equilibrium radionuclide angiography with a count-based method without any geometric assumptions. Indeed, because of its high reproducibility, this method is particularly suited for making sequential measurements in the same patient. The distinction between viable or reversible and scarred or irreversible dysfunctional myocardium can be made on the basis of myocardial perfusion, cell membrane integrity, and metabolic activity. Thallium myocardial imaging is used clinically to assess the first two parameters based on experimental data. Two clinical methods may be applied to the detection of viability: stress-redistribution-reinjection imaging or rest-redistribution imaging. In both of these, the severity of the reduction in thallium activity should be assessed to discriminate viable from nonviable myocardium. Stress-redistribution-reinjection thallium imaging should be the first approach, if possible, because inducible ischemia is a much more significant clinical variable in a patient with ventricular dysfunction in terms of management and risk assessment than is knowledge of myocardial viability. Positron emmission tomography (PET) provides enhanced image resolution and correction for body attenuation, thereby overcoming the two major limitations of thallium imaging. In addition, it provides the capacity to quantitate regional blood flow and to assess regional metabolic activity independent of flow. Overall, the accuracies of thallium imaging (around 70%) and PET imaging (around 82%) are similar for the prediction of segmental changes after revascularization. However, in patients with poor global left ventricular function, the accuracy of PET seems to be better. Further studies are needed in a large number of patients evaluated for regional and global function to establish algorithms using thallium and PET imaging in dysfunctional myocardium. Dobutamine echocardiography should also be evaluated in these algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones RH. Radionuclide angiocardiography. In: Marcus ML, Schelbert HR, Skorton DH, Wolf GL, eds.Cardiac Imaging—A Companion to Braunwald's Heart Disease. Philadelphia: WB Saunders, 1991:1006–1026.

    Google Scholar 

  2. Gibbons RJ. Equilibrium radionuclide angiography. In: Marcus ML, Schelbert HR, Skorton DJ, Wolf GL, eds.Cardiac Imaging—A Comparison to Braunwald's Heart Disease. Philadelphia: WB Saunders, 1991:1027–1046.

    Google Scholar 

  3. Links JM, Becker LC, Shindledecker G, et al. Measurement of absolute left ventricular volume from gated blood pool studies.Circulation 1982;65:82–91.

    Google Scholar 

  4. Starling MR, Dell'Italia LJ, Walsh RA, Little WC, Benedetto AR, Nusynowitz ML. Accurate estimates of absolute left ventricular volumes from equilibrium radionuclide angiographic count data using a simple geometric attenuation correction.J Am Coll Cardil 1984;3:789–798.

    Google Scholar 

  5. Melin JA, Wijns W, Robert A, et al. Validation of radionuclide cardiac output measurements during exercise.J Nucl Med 1985;26:1386–1393.

    Google Scholar 

  6. Levy WC, Cerqueira MD, Matsuoka DT, Harp GD, Sheeban FH, Stratton JR. Four radionuclide methods for left ventricular volume determination: Comparison of manual and an automated technique.J Nucl Med 1991;32:1849–1853.

    Google Scholar 

  7. Villari B, Betocchi S, Pace L, et al. Assessment of left ventricular diastolic function: Comparison of contrast ventriculography and equilibrium radionuclide angiography.J Nucl Med 1991;32:1849–1853.

    Google Scholar 

  8. White HD, Norris RM, Brown MA, Brandt PWT, Whitlock RML, Wild CJ. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction.Circulation 1987;76:44–51.

    Google Scholar 

  9. Jeremy RW, Hackworthy RA, Bautovich G, Hutton BF, Harris PJ. Infarct artery perfusion and changes in left ventricular volume in the month after myocardial infarction.J Am Coll Cardiol 1987;9:989–995.

    Google Scholar 

  10. Lee KL, Pryor DB, Pieper KS, et al. Prognostic value of radionuclide angiography in medically treated patients with coronary artery disease.Circulation 1990;82:1705–1717.

    Google Scholar 

  11. Mazzotta G, Bonow RO, Pace L, Brittain E, Epstein SE. Relation between exertional ischemia and prognosis in mildly symptomatic patients with single or double vessel coronary artery disease and left ventricular dysfunction at rest.J Am Coll Cardiol 1989;13:567–573.

    Google Scholar 

  12. Miller TD, Taliercio CP, Zinsmeister AR, Gibbons RJ. Risk stratification of single or double vessel coronary artery disease and impaired left ventricular function using exercise radionuclide angiography.Am J Cardiol 1990;65:1317–1321.

    Google Scholar 

  13. Stadius ML, Maynard C, Fritz JK, et al. Coronary anatomy and left ventricular function in the first 12 hours of acute myocardial infarction: The Western Washington randomized intracoronary streptokinase trial.Circulation 1985;72:292–301.

    Google Scholar 

  14. Norris RM, White HD. Therapeutic trials in coronary thrombosis should measure left ventricular function as primary end-point of treatment.Lancet 1988;1:104–106.

    Google Scholar 

  15. Topol EJ, Califf RM, George BS, Keriakes DJ, Leek L. Insights derived from the Thrombolysis Angioplasty in Myocardial Infarction (TAMI) trials.J Am Coll Cardiol 1988;12:24A-31A.

    Google Scholar 

  16. Simoons ML, Vos J, Tijssen JGP, et al. Long-term benefit of early thrombolytic therapy in patients with acute myocardial infarction: 5 year follow-up of a trial conducted by the Interuniversity Cardiology Institute of the Netherlands.J Am Coll Cardiol 1989;14:1609–1615.

    Google Scholar 

  17. White HD, Rivers JT, Maslowski AH, et al. Effect of intravenous streptokinase as compared with that of tissue plasminogen activator on left ventricular function after first myocardial infarction.N Engl J Med 1989;320:817–821.

    Google Scholar 

  18. Cohn JN, Johnson GR, Shabetai R, et al. Ejection fraction, peak exercise oxygen consumption, cardiothoracic ratio, ventricular arrhythmias, and plasma norepinephrine as determinants of prognosis in heart failure.Circulation 1993;87:VI5-VI16.

    Google Scholar 

  19. Cintron G, Johnson G, Francis G, Cobb F, Cohn JN. Prognostic significance of serial changes in left ventricular ejection fraction in patients with congestive heart failure.Circulation 1993;87:VI17-VI23.

    Google Scholar 

  20. Konstam MA, Rousseau MF, Kronenberg MW, et al. Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dysfunction in patients with heart failure.Circulation 1992;86:431–438.

    Google Scholar 

  21. Konstam MA, Kronenberg MW, Rousseau MF, et al. Effect of the angiotension converting enzyme inhibitor, enalapril, on the long-term progression of left ventricular dilatation in patients with asymptomatic sytolic dysfunction.Circulation 1993;88:2277–2283.

    Google Scholar 

  22. Brundage BH, Massie BM, Botvinick EH. Improved regional ventricular function after surgical revascularization.J Am Coll Cardiol 1984;3:902–908.

    Google Scholar 

  23. Rankin JS, Newman GE, Muhlbaier LH, et al. The effects of coronary revascularization on left ventricular function in ischemic heart disease.J Thorac Cardiovasc Surg 1985;90:818–832.

    Google Scholar 

  24. Chatterjee K, Swan HJC, Parmley WW, et al. Influence of direct myocardial revascularization on left ventricular asynergy and function in patients with coronary heart disease: with and without previous myocardial infarction.Circulation 1973;47:276–286.

    Google Scholar 

  25. Melchior J, Doriot DA, Chatelain P, et al. Improvement of left ventricular contraction and relaxation synchronism after recanalisation of chronic total coronary occlusion by angioplasty.J Am Coll Cardiol 1987;9:763–768.

    Google Scholar 

  26. Takeishi Y, Tono-oka I, Kubata I, et al. Functional recovery of hibernating myocardium after coronary bypass surgery: Does it coincide with improvement in perfusion?Am Heart J 1991;122:665–670.

    Google Scholar 

  27. Stinson EB, Billingham ME. Correlative study of regional left ventricular histology and contractile function.Am J Cardiol 1977;39:378–378.

    Google Scholar 

  28. Bodenheimer MM, Banka VS, Hermann GA, Trout RG, Pasdar H, Helfant RH. Reversible asynergy: Histopathologic and electrographic correlations in patients with coronary artery disease.Circulation 1976;53:792–796.

    Google Scholar 

  29. Ideker RE, Behar VS, Wagner GS, et al. Evaluation of asynergy as an indicator of myocardial fibrosis.Circulation 1978;57:715–725.

    Google Scholar 

  30. Flameng W, Suy R, Schwarz F, et al. Ultrastructural correlates of left ventricular contraction abnormalities in patients with chronic ischemic heart disease: Determinants of reversible segmental asynergy post-revascularization surgery.Am Heart J 1981;102:846.

    Google Scholar 

  31. Cabin HS, Clubbs S, Vita K, Zaret BL. Regional dysfunction by equilibrium radionuclide angiography: A clinicopathologic study evaluating the relation of degree of dysfunction to the presence and extent of myocardial infarction.J Am Coll Cardiol 1987;10:743–747.

    Google Scholar 

  32. Banka VS, Bodenheimer MM, Helfant RH. Determinants of reversible asynergy: Effect of pathological Q waves, coronary collaterals, and anatomic location.Circulation 1974;50:714–719.

    Google Scholar 

  33. Brunken R, Tillisch J, Schwaiger M, et al. Regional perfusion, glucose metabolism and wall motion in chronic electrocardiographic Q wave infarctions. Evidence for persistence of viable tissue in some infarct regions by positron emission tomography.Circulation 1986;73:951–963.

    Google Scholar 

  34. Hashimoto T, Kambara H, Fudo T, et al. Non Q wave versus Q wave myocardial infarction: Regional myocardial metabolism and blood flow assessed by positron emission tomography.J Am Coll Cardiol 1988;12:88–93.

    Google Scholar 

  35. Pierard LA, DeLandsheere CM, Berthe C, Rigo P, Kulbertus HE. Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: Comparison with positron emission tomography.J Am Coll Cardiol 1990;15:1021–1031.

    Google Scholar 

  36. Barilla F, Gheorghiade M, Alam M, et al. Low dose dobutamine in patients with acute myocardial infarction identifies viable but not contractile myocardium and predicts the magnitude of improvement in response to coronary revascularization.Am Heart J 1991;122:1522–1531.

    Google Scholar 

  37. Picano E, Marzullo P, Gigli G, et al. Identification of viable myocardium by dipyridamole-induced improvement in regional left ventricular function assessed by echocardiography in myocardial infarction and comparison with thallium scintigraphy at rest.Am J Cardiol 1992;70:703–710.

    Google Scholar 

  38. Strauss HW, Harrison K, Langan JK, Lebowitz E, Pitt B. Thallium-201 for myocardial imaging. Relation of thallium-201 at regional myocardial perfusion.Circulation 1975;51:641–645.

    Google Scholar 

  39. Weich HF, Strauss HW, Pitt B. The extraction of thallium-201 by the myocardium.Circulation 1977;56:188–191.

    Google Scholar 

  40. Melin JA, Becker LC. Quantitative relationship between global left ventricular thallium uptake and blood flow: Effects of propranolol, ouabain, dipyridamole and coronary artery occlusion.J Nucl Med 1986;27:641–652.

    Google Scholar 

  41. Moore CA, Cannon J, Watson DD, Kaul S, Beller GA. Thallium-201 kinetics in stunned myocardium characterized by severe postischemic systolic dysfunction.Circulation 1990;81:1622–1632.

    Google Scholar 

  42. Sinusas AJ, Watson DD, Cannon JM, Beller GA. Effect of ischemia and postischemic dysfunction on myocardial uptake of technetium-99m-labeled methoxyisobutyl isonitrile and thallium-201.J Am Coll Cardiol 1989;14:1785–1793.

    Google Scholar 

  43. Melin J, Becker LC, Bulkley BH. Differences in thallium-201 uptake in reperfused and non-reperfused myocardial infarction.Circ Res 1983;53:414–419.

    Google Scholar 

  44. Granato JE, Watson DD, Flanagan TL, Gascho JA, Beller GA. Myocardial thallium-201 kinetics during coronary occlusion and reperfusion: Influence of method of reflow and timing of thallium-201 administration.Circulation 1986;73:150–160.

    Google Scholar 

  45. Pohost GM, Okada RD, O'Keefe DD, et al. Thallium redistribution in dogs with severe coronary artery stenosis of fixed caliber.Circ Res 1981;48:439–446.

    Google Scholar 

  46. Melin JA, Wijns W, Keyeux A, et al. Assessment of thallium-201 redistribution versus glucose uptake as predictors of viability after coronary occlusion and reperfusion.Circulation 1988;77:927–934.

    Google Scholar 

  47. Gibson RS, Watson DD, Taylor GJ, et al. Prospective assessment of regional myocardial perfusion before and after coronary revascularization surgery by quantitative thallium-201 scintigraphy.J Am Coll Cardiol 1983;1:804–815.

    Google Scholar 

  48. Yamamoto K, Asada S, Masuyama T, et al. Myocardial hibernation in the infarcted region cannot be assessed from the presence of stress-induced ischemia: Usefulness of delayed image of exercise thallium-201 scintigraphy.Am Heart J 1993;125:33–40.

    Google Scholar 

  49. Sabia PJ, Powers ER, Ragosta M, Smith WH, Watson DD, Kaul S. Role of quantitative planar thallium-201 imaging for determining viability in patients with acute myocardial infarction and a totally occluded infarct-related artery.J Nucl Med 1993;34:728–736.

    Google Scholar 

  50. Liu P, Kiess MC, Okada RD, et al. The persistent defect on exercise thallium imaging and its fate after myocardial revascularization: Does it represent scar or ischemia?Am Heart J 1985;110:996–1001.

    Google Scholar 

  51. Kiat H, Berman DS, Maddahi J, Yang LD, Van Train K, Rozanski A, Friedman J. Late reversibility of tomographic myocardial thallium-201 defects: An accurate marker of myocardial viability.J Am Coll Cardiol 1988;12:1456–1463.

    Google Scholar 

  52. Dilsizian V, Rocco TP, Freedman NM, Lean MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging.N Engl J Med 1990;323:141–146.

    Google Scholar 

  53. Ohtani H, Tamaki N, Yonekura Y, et al. Value of thallium-201 reinjection after delayed SPECT imaging for predicting reversible ischemia after coronary artery bypass grafting.Am J Cardiol 1990;66:394–399.

    Google Scholar 

  54. Ragosta M, Beller GA, Watson DD, Kaul S, Gimple LW. Quantitative planar rest-redistribution thallium-201 imaging in detection of myocardial viability and prediction of improvement in left ventricular function after coronary bypass surgery in patients with severely depressed left ventricular function.Circulation 1993;87:1630–1641.

    Google Scholar 

  55. Piwnica-Worms D, Kronauge JF, Chiu ML. Uptake and retention of hexakis (2-methoxyisobutyl isonitrile) technetium(I) in cultured chick myocardial cells. Mitochondrial and plasma membrane potential dependence.Circulation 1990;82:1826–1838.

    Google Scholar 

  56. Piwnica-Worms D, Chiu ML, Kronauge JF. Divergent kinetics of Tl-201 and Tc-99m-SESTAMIBI in culture chick ventricular myocytes during ATP depletion.Circulation 1992;85:1531–1541.

    Google Scholar 

  57. Beanlands R, Dawood F, Wen WH, McLaughlin PR, Butany J, Liu P. Are the kinetics of technetium 99m-methoxy isobutyl isonitrile affected by cell metabolism and viability?Circulation 1990;82:1802–1814.

    Google Scholar 

  58. Beller GA, Glover DK, Edwards NC, Ruiz M, Simanis JP, Watson DD.99mTc-Sestamibi uptake and retention during myocardial ischemia and reperfusion.Circulation 1993;87:2033–2042.

    Google Scholar 

  59. Sinusas AJ, Watson DD, Cannon JM, Beller GA. Effect or ischemia and postischemic dysfunction on myocardial uptake of technetium-99m-labeled methoxyisobutyl isonitrile and thallium-201.J Am Coll Cardiol 1989;14:1785–1793.

    Google Scholar 

  60. De Coster P, Wijns W, Robert A, Beckers C, Melin JA. Area at risk determination by technetium-99m-hexakis-methoxy-2-methylpropyl-isonitrile in experimental reperfused myocardial infarction.Circulation 1990;82:2152–2162.

    Google Scholar 

  61. Rocco TP, Dilsizian V, Strauss HW, Boucher CA. Technetium-99m isonitrile myocardial uptake at rest. Relation to clinical markers of potential viability.J Am Coll Cardiol 1989;14:1678–1684.

    Google Scholar 

  62. Cuocolo A, Pace L, Ricciardelli B, Chiariello M, Trimarco B, Salvatore M. Identification of viable myocardium in patients with chronic coronary artery disease: Comparison of thallium-201 scintigraphy and reinjection and technetium-99m methoxyisobutyl isonitrile.J Nucl Med 1992;33:505–511.

    Google Scholar 

  63. Altehoefer C, Kaiser HJ, Dorr R, et al. Fluorine-18 deoxyglucose PET for assessment of viable myocardium in perfusion defects in 99mTc-MIBI SPET: A comparative study in patients with coronary artery disease.Eur J Nucl Med 1992;19:334–342.

    Google Scholar 

  64. Marzullo P, Sambuceti G, Parodi O. The role of Sestamibi scintigraphy in the radioisotopic assessment of myocardial viability.J Nucl Med 1992;33:1925–1930.

    Google Scholar 

  65. Schwaiger M, Schelbert HR, Ellison D, Hansen H, Yeatman L, Vinten-Johansen J. Sustained regional abnormalities in cardiac metabolism after transient ischemia in the chronic dog model.J Am Coll Cardiol 1985;6:336–347.

    Google Scholar 

  66. Buxton DB, Vaghaiwalla MF, Krivokapich J, Phelps ME, Schelbert HR. Quantitative assessment of prolonged metabolic abnormalities in reperfused canine myocardium.Circulation 1992;85:1842–1856.

    Google Scholar 

  67. Heyndrickx GR, Wijns W, Vogelaers D, et al. Recovery of regional contractile function and oxidative metabolism stunned myocardium induced by one hour circumflex coronary artery stenosis in chronically instrumented dogs.Circ Res 1993;72:901–913.

    Google Scholar 

  68. Weinheimer CJ, Brown MA, Nohara R, Perez JE, Bergmann SR. Functional recovery after reperfusion is predicated on recovery of myocardial oxidative metabolism.Am Heart J 1993;125:939–949.

    Google Scholar 

  69. Fedele FA, Gewirtz J, Capone RJ, et al. Metabolic response to prolonged reduction of myocardial blood flow distal to a severe coronary artery stenosis.Circulation 1988;78:729–735.

    Google Scholar 

  70. Rivas F, Cobb FR, Bache RJ, Greenfield JC. Relationship between blood flow to ischemic regions and extent of myocardial infarction.Circ Res 1976;38:439–447.

    Google Scholar 

  71. Hearse DJ, Crome R, Yellon DM, Wyse R. Metabolic and flow correlates of myocardial ischaemia.Circ Res 1983;17:452–458.

    Google Scholar 

  72. Miura T, Downey JM. Critical collateral blood flow level for salvage of ischemic myocardium.Can J Cardiol 1989;5:201–205.

    Google Scholar 

  73. Kalff V, Schwaiger M, Nguyen N, McClanahan B, Gallagher KP. The relationship between myocardial blood flow and glucose uptake in ischemic canine myocardium determined with fluorine-18-deoxyglucose.J Nucl Med 1992;33:1346–1353.

    Google Scholar 

  74. Yamamoto Y, de Silva R, Rhodes CG, et al. A new strategy for the assessment of viable myocardium and regional myocardial blood flow using15O-water and dynamic positron emission tomography.Circulation 1992;86:167–178.

    Google Scholar 

  75. Vanoverschelde JL, Wijns W, Depré C, et al. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of non-infarcted collateral dependent myocardium.Circulation 1993;87:1513–1523.

    Google Scholar 

  76. Tillisch J, Brunken R, Marshall R, et al. Reversibility of cardiac wall motion abnormalities predicted by positron tomography.N Engl J Med 1986;314:884–888.

    Google Scholar 

  77. Tamaki N, Yonekura Y, Yamashita K, et al. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting.Am J Cardiol 1989;64:860–865.

    Google Scholar 

  78. Tamaki N, Ohtani H, Yamashita K, et al. Metabolic activity in the areas of new fill-in after thallium-201 reinjection: Comparison with positron emission tomography using fluorine-18-deoxyglucose.J Nucl Med 1991;32:673–678.

    Google Scholar 

  79. Marwick TH, MacIntyre WJ, Lafont A, Nemec JJ, Salcedo EE. Metabolic responses of hibernating and infarcted myocardium to revascularization.Circulation 1992;85:1347–1353.

    Google Scholar 

  80. Lucignani G, Paolini G, Landoni C, et al. Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methoxyisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease.Eur J Nucl Med 1992;19:874–881.

    Google Scholar 

  81. Carrel T, Jenni R, Haubold-Reuter S, Von Schulthess G, Pasic M, Turina M. Improvement of severely reduced left ventricular function after surgical revascularization in patients with preoperative myocardial infarction.Eur J Cardiothorac Surg 1992;6:479–484.

    Google Scholar 

  82. Gropler R, Geltman E, Sampathkumaran K, et al. Functional recovery after coronary revascularization for chronic coronary artery disease is dependent on maintenance of oxidative metabolism.J Am Coll Cardiol 1992;20:569–577.

    Google Scholar 

  83. Schwaiger M, Brunken R, Grover-McKay M, et al. Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography.J Am Coll Cardiol 1986;8:800–808.

    Google Scholar 

  84. Gropler R, Siegel B, Sampathkumaran K, et al. Dependence of recovery of contractile function on maintenance of oxidative metabolism after myocardial infarction.J Am Coll Cardiol 1992;19:989–997.

    Google Scholar 

  85. Sebree L, Bianco J, Subramanian R, et al. Discordance between accumulation of C-14 deoxyglucose and Tl-201 in reperfused myocardium.J Mol Cell Cardiol 1991;23:603–616.

    Google Scholar 

  86. Eitzman D, Al-Aouar Z, Kanter HL, et al. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography.J Am Coll Cardiol 1992;20:559–565.

    Google Scholar 

  87. Knuuti MJ, Nuutila P, Ruotsalainen U, et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography.J Nucl Med 1992;33:1255–1262.

    Google Scholar 

  88. Vanoverschelde JL, Melin JA, Bol A, et al. Regional oxidative metabolism in patients with reperfused anterior myocardial infarction: Relation to regional blood flow and glucose uptake.Circulation 1992;85:9–21.

    Google Scholar 

  89. Conrad GL, Rau EE, Shine KI. Creatine kinase release, potassium-42 content and mechanical performance in anoxic rabbit myocardium.J Clin Invest 1979;64:155–161.

    Google Scholar 

  90. Hill JL, Gettes LS. Effect of acute coronary artery occlusion on local myocardial extracellular K+ activity in swine.Circulation 1980;61:768–777.

    Google Scholar 

  91. Goldstein RA. Kinetics of rubidium-82 after coronary occlusion and reperfusion.J Clin Invest 1985;75:1131–1137.

    Google Scholar 

  92. Gould KL, Haynie M, Hess MJ, Yoshida K, Mullani N, Smalling RW. Myocardial metabolism of fluorodeoxyglucose compared to cell membrane integrity for the potassium analogue Rb-82 for assessing infarct size in man by PET.J Nucl Med 1991;32:1–9.

    Google Scholar 

  93. de Silva R, Yamamoto Y, Rhodes CG, et al. Preoperative prediction of the outcome of coronary revascularization using positron emission tomography.Circulation 1992;86:1738–1742.

    Google Scholar 

  94. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction.Circulation 1991;83:26–37.

    Google Scholar 

  95. Perrone-Filardi P, Bacharach SL, Dilsizian V, et al. Metabolic evidence of viable myocardium in regions with reduced wall thickness and absent wall thickening in patients with chronic ischemic left ventricular dysfunction.J Am Coll Cardiol 1992;20:161–168.

    Google Scholar 

  96. Perrone-Filardi P, Bacharach SL, Dilsizian V, Maurea S, Frank JA, Bonow RO. Regional left ventricular wall thickening. Relation to regional uptake of18Fluorodeoxyglucose and Tl-201 in patients with chronic coronary artery disease and left ventricular dysfunction.Circulation 1992;86:1125–1137.

    Google Scholar 

  97. Dilsizian V, Bonow RO. Current diagnostic techniques of assessing myocardial viability in patients with hibernating and stunned myocardium.Circulation 1993;87:1–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melin, J.A., Wijns, W., Vanoverschelde, JL. et al. Assessment of left ventricular dysfunction by nuclear cardiology. Cardiovasc Drug Ther 8 (Suppl 2), 381–392 (1994). https://doi.org/10.1007/BF00877323

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877323

Key words

Navigation