Skip to main content
Log in

Direct scanning tunneling microscope (STM) observation of Cr(III) complexes on hematite (001) surfaces

Dedicated to Paul W. Schindler on his retirement

  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Scanning tunneling microscopy (STM) is used to observe, at the atomic scale, Cr(III) adsorbed to hematite (001) surfaces from aqueous solution. The Cr(III) adsorbates are relatively immobile, but estimated activation energies for surface self-diffusion are lower than those for water or hydroxyl substitution in aqueous Cr(III). Possible causes are effects of STM imaging (artifacts), high ligand-substitution rates for adsorbed species, or participation of substrate Fe (III) ligand exchange. STM imaging of suitable aqueous surface complexes is shown to be feasible, and constitutes a new way to study the relationships between microscopic and macroscopic chemical behavior of adsorbed species in aqueous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blum, A.E. and A.C. Lasaga, 1991. The role of surface speciation in the dissolution of albite. Geochim. Cosmochim. Acta 55:2193–2201.

    Google Scholar 

  • Burton, W.K., N. Cabrera and F.C. Frank, 1951. The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. Royal Soc. London, Ser. A, 243:299–358.

    Google Scholar 

  • Casey, W.H. and H.R. Westrich, 1991. Control of dissolution rates of orthosilicate minerals by divalent metal-oxygen bonds. Nature 355:157–159.

    Google Scholar 

  • Cotton, F.A. and G. Wilkinson, 1988. Advanced Inorganic Chemistry (fifth edition) John Wiley, N.Y., 1455 pp.

    Google Scholar 

  • Charlet, L. and A. Manceau, 1992. X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface. J. Colloid Int. Sci. 148(2):443–458.

    Google Scholar 

  • Dunphy, J.C., P. Sautet, D.F. Ogletree, O. Dabbousi and M.B. Salmeron, 1993. Scanning tunneling microscopy study of the surface diffusion of sulfur on Re(0001). Phys. Rev. B 47(4):2320–2328.

    Google Scholar 

  • Dzombak, D.A. and F.M.M. Morel, 1990. Surface Complexation Modeling: Hydrous Ferric Oxide. John Wiley, N.Y., 393 pp.

    Google Scholar 

  • Eggleston, C.M. and M.F. Hochella Jr., 1990. Scanning tunneling microscopy of sulfide surfaces. Geochim. Cosmochim. Acta 54:1511–1517.

    Google Scholar 

  • Eggelston, C.M. and M.F. Hochella Jr., 1992. The structure of hematite (001) surfaces by scanning tunneling microscopy: Image interpretation, surface relaxation, and step structure. Am. Mineral. 77:911–922.

    Google Scholar 

  • Furrer, G. and W. Stumm, 1986. The coordination chemistry of weathering: I. Dissolution kinetics ofδ-Al2O3 and BeO. Geochim. Cosmochim. Acta 50:1847–1860.

    Google Scholar 

  • Ganz, E., S.K. Theiss, I.S. Hang and J. Golovchenko, 1992. Direct measurement of diffusion by hot tunneling microscopy: Activation energy, anisotropy, and long jumps. Phys. Rev. Lett. 68(10):1567–1570.

    Google Scholar 

  • Gratz, A.J., S. Manne and P.K. Hansma, 1991. Atomic force microscopy of atomic-scale ledges and etch pits formed during dissolution of quartz. Science 251:1343–1346.

    Google Scholar 

  • Gratz, A.J., P.E. Hillner and P.K. Hansma, 1993. Step dynamics and spiral growth on calcite. Geochim. Cosmochim. Acta 57:491–495.

    Google Scholar 

  • Hachiya, K., M. Sasaki, T. Ikeda, N. Mikami and T. Yasunaga, 1984. Static and kinetic studies of adsorption-desorption of metal ions on aγ-Al2O3 surface. 2. Kinetic study by means of pressure jump technique. J. Phys. Chem. 88:27–31.

    Google Scholar 

  • Hwang, I.-S. and J. Golovchenko, 1992. Observation of metastable structural excitations and concerted atomic motions on a crystal surface. Science, 258:1119–1122.

    Google Scholar 

  • Kieber, R.J. and G.R. Helz, 1992. Indirect photoreduction of aqueous chromium(VI). Environ. Sci. Technol. 26:307–312.

    Google Scholar 

  • Marichev, V.A., 1991. A new possibility of application of electron tunneling effects in electrochemical double layer structure investigations. Surf. Sci. 250:220–228.

    Google Scholar 

  • Merchant, P., R. Collins, R. Kershaw, K. Dwight and A. Wold, 1979. The electrical, optical and photoconducting properties of Fe2−xCrxO3 (0≤ x ≤ 0.47). J. Sol. State Chem. 27:307–315.

    Google Scholar 

  • Pulfer, K., P.W. Schindler, J.C. Westall and R. Grauer, 1984. Kinetics and mechanism of dissolution of bayerite (γ-Al(OH)3) in HNO3-HF solutions at 298.2 K. J. Coll. Int. Sci. 101:554–564.

    Google Scholar 

  • Rohrer, G.S., V.E. Henrich, D.A. Bonnell, 1992. A scanning tunneling microscopy and spectroscopy study of the TiO2−x(110) surface. Surf. Sci. 278:146–156.

    Google Scholar 

  • Rotzinger, F.P., H. Stunzi and W. Marty, 1986. Early stages of the hydrolysis of chromium(III) in aqueous solution. 3. Kinetics of dimerization of the deprotonated aqua ion. Inorg. Chem. 25:489–495.

    Google Scholar 

  • Schindler, P.W., 1981. Surface complexes at oxide-water interfaces. In: M.A. Anderson and A.J. Rubin (eds.), Adsorption on Inorganics at Solid-Liquid Interfaces, Ann Arbor Science, Ann Arbor, MI, pp. 1–49.

    Google Scholar 

  • Schindler, P.W. and W. Stumm (1987) The surface chemistry of oxides, hydroxides, and oxide minerals. In: W. Stumm (ed.), Aquatic Surface Chemistry, John Wiley and Sons, N.Y., pp. 83–110.

    Google Scholar 

  • Somorjai, G.A., 1981. Chemistry in Two Dimensions: Surfaces. Cornell University Press, Ithaca, N.Y., 575 pp.

    Google Scholar 

  • Sverjensky, D.A., 1992. Linear free energy relations for predicting dissolution rates of solids. Nature 358:310–313.

    Google Scholar 

  • Sverjensky, D.A., 1993. A physical surface-complexation theory for sorption at the mineral-aqueous solution interface (abstr.). Trans. Am. Geophys. Union 74(16):319.

    Google Scholar 

  • Wehrli, B., S. Ibric and W. Stumm, 1990. Adsorption kinetics of vanadyl(IV) and chromium(III) to aluminum oxide: Evidence for a two-step mechanism. Coll. and Surf. 51:77–88.

    Google Scholar 

  • Wieland, E., B. Wehrli and W. Stumm, 1988. The coordination chemistry of weathering: III. A generalization on the dissolution rates of minerals. Geochim. Cosmochim. Acta 52:1969–1981.

    Google Scholar 

  • Zangwill, A., 1988. Physics at Surfaces. Cambridge University Press, 454 pp.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eggleston, C.M. Direct scanning tunneling microscope (STM) observation of Cr(III) complexes on hematite (001) surfaces. Aquatic Science 55, 240–249 (1993). https://doi.org/10.1007/BF00877269

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877269

Key words

Navigation