Skip to main content

Abstract

Scanning tunneling microscopy (STM) is one of the basic techniques for the analysis of surface reconstructions, overlayer growth mechanisms, surface dynamics, and chemistry at the atomic scale. STM is used in physics, chemistry, and biology for high resolution studies of organic and inorganic nanoobjects. This chapter is devoted to STM imaging at the level of individual electron orbitals which can lead to improvement of the spatial resolution in STM experiments down to the subatomic scale and development of chemical-selective imaging of multi-component surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40(2):178–180

    Article  CAS  Google Scholar 

  2. Binnig G, Rohrer H (1982) Scanning tunnelling microscopy. Helv Phys Acta 55(6):726–735

    CAS  Google Scholar 

  3. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933

    Article  CAS  Google Scholar 

  4. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49(1):57–61

    Article  Google Scholar 

  5. Eigler DM, Schweizer EK (1990) Positioning single atoms with a scanning tunneling microscope. Nature 344(6266):524–526

    Article  CAS  Google Scholar 

  6. Crommie MF, Lutz CP, Eigler DM (1993) Confinement of electrons to quantum corrals on a metal surface. Science 262(5131):218–220

    Article  CAS  Google Scholar 

  7. Stroscio JA, Celotta RJ (2004) Controlling the dynamics of a single atom in lateral atom manipulation. Science 306(5694):242–247

    Article  CAS  Google Scholar 

  8. Walsh MA, Hersam MC (2009) Atomic-scale templates patterned by ultrahigh vacuum scanning tunnelling microscopy on silicon. Annu Rev Phys Chem 60:193–216

    Article  CAS  Google Scholar 

  9. Khajetoorians AA, Wiebe J, Chilian B, Wiesendanger R (2012) Realizing all-spin–based logic operations atom by atom. Science 332(6033):1062–1064

    Article  CAS  Google Scholar 

  10. Khajetoorians AA, Wiebe J, Chilian B, Lounis S, Blügel S, Wiesendanger R (2012) Atom-by-atom engineering and magnetometry of tailored nanomagnets. Nat Phys 8(6):497–503

    Article  CAS  Google Scholar 

  11. Krasnikov SA, Lübben O, Murphy BE, Bozhko SI, Chaika AN, Sergeeva NN, Bulfin B, Shvets IV (2013) Writing with atoms: oxygen adatoms on the MoO2/Mo(110) surface. Nano Res 6(12):929–937

    Article  CAS  Google Scholar 

  12. Stipe BC, Rezaei MA, Ho W (1998) Single-molecule vibrational spectroscopy and microscopy. Science 280(5370):1732–1735

    Article  CAS  Google Scholar 

  13. Feenstra RM, Stroscio JA, Tersoff J, Fein AP (1987) Atom-selective imaging of the GaAs(110) surface. Phys Rev Lett 58(12):1192–1195

    Article  CAS  Google Scholar 

  14. Schmid M, Stadler H, Varga P (1993) Direct observation of surface chemical order by scanning tunneling microscopy. Phys Rev Lett 70(10):1441–1444

    Article  CAS  Google Scholar 

  15. Wiesendanger R, Güntherodt H-J, Güntherodt G, Gambino RJ, Ruf R (1990) Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope. Phys Rev Lett 65(2):247–250

    Article  CAS  Google Scholar 

  16. Wiesendanger R, Shvets IV, Bürgler D, Tarrach G, Güntherodt HJ, Coey JMD, Gräser S (1992) Topographic and magnetic-sensitive scanning tunneling microscope study of magnetite. Science 255(5044):583–586

    Article  CAS  Google Scholar 

  17. Wiesendanger R (2009) Spin mapping at the nanoscale and atomic scale. Rev Mod Phys 81(4):1495–1550

    Article  CAS  Google Scholar 

  18. Binnig G, Rohrer H, Gerber C, Weibel E (1983) (7 × 7) reconstruction on Si(111) resolved in real space. Phys Rev Lett 50(2):120–123

    Article  CAS  Google Scholar 

  19. Binnig G, Rohrer H, Ch G, Weibel E (1983) (111) facets as the origin of reconstructed Au(110) surfaces. Surf Sci 131(1):L379–L384

    Article  CAS  Google Scholar 

  20. Gawronski H, Mehlhorn M, Morgenstern K (2008) Imaging phonon excitation with atomic resolution. Science 319(5865):930–933

    Article  CAS  Google Scholar 

  21. Chaika AN, Molodtsova OV, Zakharov AA, Marchenko D, Sanchez-Barriga J, Varykhalov A, Shvets IV, Aristov VY (2013) Continuous wafer-scale graphene on cubic-SiC(001). Nano Res 6(8):562–570

    Article  CAS  Google Scholar 

  22. Chaika AN, Nazin SS, Semenov VN, Bozhko SI, Lübben O, Krasnikov SA, Radican K, Shvets IV (2010) Selecting the tip electron orbital for scanning tunneling microscopy imaging with sub-ångström lateral resolution. EPL 92(4):46003

    Article  CAS  Google Scholar 

  23. Chaika AN, Nazin SS, Semenov VN, Orlova NN, Bozhko SI, Lübben O, Krasnikov SA, Radican K, Shvets IV (2013) High resolution STM imaging with oriented single crystalline tips. Appl Surf Sci 267:219–223

    Article  CAS  Google Scholar 

  24. Chaika AN, Orlova NN, Semenov VN, Postnova EY, Krasnikov SA, Lazarev MG, Chekmazov SV, Aristov VY, Glebovsky VG, Bozhko SI, Shvets IV (2014) Fabrication of [001]-oriented tungsten tips for high resolution scanning tunneling microscopy. Sci Rep 4:3742. doi:10.1038/srep03742

    Article  CAS  Google Scholar 

  25. Herz M, Giessibl FJ, Mannhart J (2003) Probing the shape of atoms in real space. Phys Rev B 68(4):045301

    Article  CAS  Google Scholar 

  26. Chaika AN, Semenov VN, Nazin SS, Bozhko SI, Murphy S, Radican K, Shvets IV (2007) Atomic row doubling in the STM images of Cu(014)-O obtained with MnNi tips. Phys Rev Lett 98(20):206101

    Article  CAS  Google Scholar 

  27. Murphy S, Radican K, Shvets IV, Chaika AN, Semenov VN, Nazin SS, Bozhko SI (2007) Asymmetry effects in atomically resolved STM images of Cu(014)-O and W(100)-O surfaces measured with MnNi tips. Phys Rev B 76(24):245423

    Article  CAS  Google Scholar 

  28. Chaika AN, Myagkov AN (2008) Imaging atomic orbitals in STM experiments on a Si(111)-(7 × 7) surface. Chem Phys Lett 453(4–6):217–221

    Article  CAS  Google Scholar 

  29. Cren T, Serrier-Garcia L, Debontridder F, Roditchev D (2011) Vortex fusion and giant vortex states in confined superconducting condensates. Phys Rev Lett 107(9):097202

    Article  CAS  Google Scholar 

  30. Hembacher S, Giessibl FJ, Mannhart J, Quate CF (2005) Local spectroscopy and atomic imaging of tunneling current, forces, and dissipation on graphite. Phys Rev Lett 94(5):056101

    Article  CAS  Google Scholar 

  31. Grim PCM, De Feyter S, Gesquière A, Vanoppen P, Rücker M, Valiyaveettil S, Moessner G, Müllen K, De Schryver FC (1997) Submolecularly resolved polymerization of diacetylene molecules on the graphite surface observed with scanning tunneling microscopy. Angew Chem Int Ed Engl 36(23):2601–2603

    Article  CAS  Google Scholar 

  32. den Boer D, Li M, Habets T, Iavicoli P, Rowan AE, Nolte RJM, Speller S, Amabilino DB, De Feyter S, Elemans JAAW (2013) Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface. Nat Chem 5(7):621–627

    Article  CAS  Google Scholar 

  33. Chen CJ (1988) Theory of scanning tunneling spectroscopy. J Vac Sci Technol A 6(2):319–322

    Article  Google Scholar 

  34. Chaika AN, Nazin SS, Bozhko SI (2008) Selective STM imaging of oxygen-induced Cu(115) surface reconstructions with tungsten probes. Surf Sci 602(12):2078–2088

    Article  CAS  Google Scholar 

  35. Binnig G, Rohrer H (1987) Scanning tunneling microscopy – from birth to adolescence. Rev Mod Phys 59(3):615–625

    Article  CAS  Google Scholar 

  36. Jurczyszyn L, Mingo N, Flores F (1998) Influence of the atomic and electronic structure of the tip on STM images and STS spectra. Surf Sci 402–404:459–463

    Article  Google Scholar 

  37. Nagahara LA, Thundat T, Lindsay SM (1989) Preparation and characterization of STM tips for electrochemical studies. Rev Sci Instrum 60(10):3128–3130

    Article  CAS  Google Scholar 

  38. Iwami M, Uehara Y, Ushioda S (1998) Preparation of silver tips for scanning tunneling microscopy imaging. Rev Sci Instrum 69(11):4010–4011

    Article  CAS  Google Scholar 

  39. Ibe JP, Bey PP, Brandow SL, Brizzolara RA, Burnham NA, DiLella DP, Lee KP, Marrian CRK, Colton RJ (1990) On the electrochemical etching of tips for scanning tunneling microscopy. J Vac Sci Technol 8(4):3570–3575

    Article  CAS  Google Scholar 

  40. Nunes G, Amer NM (1993) Atomic resolution scanning tunneling microscopy with a gallium arsenide tip. Appl Phys Lett 63(13):1851–1853

    Article  CAS  Google Scholar 

  41. Prins MWJ, Jansen R, Van Kempen H (1996) Spin-polarized tunneling with GaAs tips in scanning tunneling microscopy. Phys Rev B 53(12):8105–8113

    Article  CAS  Google Scholar 

  42. Sutter P, Zahl P, Sutter E, Bernard JE (2003) Energy-filtered scanning tunneling microscopy using a semiconductor tip. Phys Rev Lett 90(16):166101

    Article  CAS  Google Scholar 

  43. Kohen A, Noat Y, Proslier T, Lacaze E, Aprili M, Sacks W, Roditchev D (2005) Fabrication and characterization of scanning tunneling microscopy superconducting Nb tips having highly enhanced critical fields. Physica C 419(1–2):18–24

    Article  CAS  Google Scholar 

  44. Murphy S, Osing J, Shvets IV (1999) Atomically resolved p(3 × 1) reconstruction on the W(100) surface imaged with magnetic tips. J Magn Magn Mater 198–199:686–688

    Article  Google Scholar 

  45. Murphy S, Osing J, Shvets IV (1999) Fabrication of submicron-scale manganese-nickel tips for spin-polarized STM studies. Appl Surf Sci 144–145:497–500

    Article  Google Scholar 

  46. Wiesendanger R, Bürgler D, Tarrach G, Schaub T, Hartmann U, Güntherodt H-J, Shvets IV, Coey JMD (1991) Recent advances in scanning tunneling microscopy involving magnetic probes and samples. Appl Phy A-Materials Sci Process 53(5):349–355

    Article  Google Scholar 

  47. Shvets IV, Wiesendanger R, Bürgler D, Tarrach G, Günterodt H-J, Coey JMD (1992) Progress towards spin-polarized scanning tunneling microscopy. J Appl Phys 71(11):5489–5499

    Article  CAS  Google Scholar 

  48. Schlenhoff A, Krause S, Herzog G, Wiesendanger R (2010) Bulk Cr tips with full spatial magnetic sensitivity for spin-polarized scanning tunneling microscopy. Appl Phys Lett 97(8):083104

    Article  CAS  Google Scholar 

  49. Romming N, Hanneken C, Menzel M, Bickel JE, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R (2013) Writing and deleting single magnetic skyrmions. Science 341(6146):636–639

    Article  CAS  Google Scholar 

  50. Bode M (2003) Spin-polarized scanning tunnelling microscopy. Rep Prog Phys 66(4):523–582

    Article  CAS  Google Scholar 

  51. Decker R, Brede J, Atodiresei N, Caciuc V, Blügel S, Wiesendanger R (2013) Atomic-scale magnetism of cobalt-intercalated graphene. Phys Rev B 87(4):041403(R)

    Article  CAS  Google Scholar 

  52. Hofmann T, Welker J, Giessibl FJ (2010) Preparation of light-atom tips for scanning probe microscopy by explosive delamination. J Vac Sci Technol B 28(3):C4E28

    Article  CAS  Google Scholar 

  53. Kaneko R, Oguchi S (1990) Ion-implanted diamond tip for a scanning tunneling microscope. Jpn J Appl Phys 29(9):1854–1855

    Article  CAS  Google Scholar 

  54. Visser EP, Gerritsen JW, van Enckevort WJP, van Kempen H (1992) Tips for scanning tunneling microscopy made of monocrystalline, semiconducting, chemical vapor deposited diamond. Appl Phys Lett 60(26):3232–3234

    Article  Google Scholar 

  55. Albin S, Zheng J, Cooper JB, Fu W, Lavarias AC (1997) Microwave plasma chemical vapor deposited diamond tips for scanning tunneling microscopy. Appl Phys Lett 71(19):2848–2850

    Article  CAS  Google Scholar 

  56. Meyer T, Klemenc M, von Kanel H, Ph N (2000) Diamond tips in low temperature scanning tunnelling microscopy. Surf Sci 470(1–2):164–170

    Article  CAS  Google Scholar 

  57. Grushko V, Lubben O, Chaika AN, Novikov N, Mitskevich E, Chepugov A, Lysenko O, Murphy BE, Krasnikov SA, Shvets IV (2014) Atomically resolved STM imaging with a diamond tip: simulation and experiment. Nanotechnology 25(2):025706

    Article  CAS  Google Scholar 

  58. Yu ZQ, Wang CM, Du Y, Thevuthasan S, Lyubinetsky I (2008) Reproducible tip fabrication and cleaning for UHV STM. Ultramicroscopy 108(9):873–877

    Article  CAS  Google Scholar 

  59. Fink H-W (1986) Mono-atomic tips for scanning tunneling microscopy. IBM J Res Dev 30(5):460–465

    Article  CAS  Google Scholar 

  60. Stroscio JA, Feenstra RM, Fein PA (1987) Local density and long-range screening of adsorbed oxygen atoms on the GaAs(110) surface. Phys Rev Lett 58(16):1668–1671

    Article  CAS  Google Scholar 

  61. Neddermeyer H, Drechsler M (1988) Electric field-induced changes of W(110) and W(111) tips. J Microsc 152(2):459–466

    Article  CAS  Google Scholar 

  62. Wintterlin J, Wiechers J, Brune H, Gritsch T, Hofer H, Behm RJ (1989) Atomic-resolution imaging of close-packed metal surfaces by scanning tunneling microscopy. Phys Rev Lett 62(1):59–62

    Article  CAS  Google Scholar 

  63. Chen CJ (1991) Microscopic view of scanning tunneling microscopy. J Vac Sci Technol A 9(1):44–50

    Article  CAS  Google Scholar 

  64. Heike S, Hashizume T, Wada Y (1996) In situ control and analysis of the scanning tunneling microscope tip by formation of sharp needles on the Si sample and W tip. J Vac Sci Technol B 14(2):1522–1526

    Article  CAS  Google Scholar 

  65. Castellanos-Gomez A, Rubio-Bollinger G, Garnica M, Barja S, Vazquez de Parga AL, Miranda R, Agraıt N (2012) Highly reproducible low temperature scanning tunnelling microscopy and spectroscopy with in situ prepared tips. Ultramicroscopy 122:1–5

    Article  CAS  Google Scholar 

  66. Biegelsen DK, Ponce FA, Tramontana JC, Koch SM (1987) Ion milled tips for scanning tunneling microscopy. Appl Phys Lett 50(11):696–698

    Article  CAS  Google Scholar 

  67. Biegelsen DK, Ponce FA, Tramontana JC (1989) Simple ion milling preparation of <111> tungsten tips. Appl Phys Lett 54(13):1223–1225

    Article  CAS  Google Scholar 

  68. Morishita S, Okuyama F (1991) Sharpening of monocrystalline molybdenum tips by means of inert-gas ion sputtering. J Vac Sci Technol A 9(1):167–169

    Article  CAS  Google Scholar 

  69. Eltsov KN, Shevlyuga VM, Yurov VY, Kvit AV, Kogan MS (1996) Sharp tungsten tips prepared for STM study of deep nanostructures in UHV. Phys Low-Dim Struct 9–10:7–14

    Google Scholar 

  70. Hansma PK, Tersoff J (1987) Scanning tunneling microscopy. J Appl Phys 61(2):R1–R23

    Article  CAS  Google Scholar 

  71. Demuth JE, Koehler U, Hamers RJ (1988) The STM learning curve and where it may take us. J Microsc 152(2):299–316

    Article  CAS  Google Scholar 

  72. Kuk Y, Silverman PJ (1986) Role of tip structure in scanning tunneling microscopy. Appl Phys Lett 48(23):1597–1599

    Article  CAS  Google Scholar 

  73. Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384(6605):147–150

    Article  CAS  Google Scholar 

  74. Kelly KF, Sarkar D, Hale GD, Oldenburg SJ, Halas NJ (1996) Threefold electron scattering on graphite observed with C60-adsorbed STM tips. Science 273(5280):1371–1373

    Article  CAS  Google Scholar 

  75. Repp J, Meyer G, Stojkovic SM, Gourdon A, Joachim C (2005) Molecules on insulating films: scanning tunneling microscopy imaging of individual molecular orbitals. Phys Rev Lett 94(2):026803

    Article  CAS  Google Scholar 

  76. Deng ZT, Lin H, Ji W, Gao L, Lin X, Cheng ZH, He XB, Lu JL, Shi DX, Hofer WA, Gao H-J (2006) Selective analysis of molecular states by functionalized scanning tunneling microscopy tips. Phys Rev Lett 96(15):156102

    Article  CAS  Google Scholar 

  77. Temirov R, Soubatch S, Neucheva O, Lassise AC, Tautz FS (2008) A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy. New J Phys 10(5):053012

    Article  CAS  Google Scholar 

  78. Weiss C, Wagner C, Kleimann C, Rohlfing M, Tautz FS, Temirov R (2010) Imaging Pauli repulsion in scanning tunneling microscopy. Phys Rev Lett 105(8):086103

    Article  CAS  Google Scholar 

  79. Gross L, Moll N, Mohn F, Curioni A, Meyer G, Hanke F, Persson M (2011) High-resolution molecular orbital imaging using a p-wave STM tip. Phys Rev Lett 107(8):086101

    Article  CAS  Google Scholar 

  80. Cheng Z, Du S, Guo W, Gao L, Deng Z, Jiang N, Guo H, Tang H, Gao H-J (2011) Direct imaging of molecular orbitals of metal phthalocyanines on metal surfaces with an O2-functionalized tip of a scanning tunneling microscope. Nano Res 4(6):523–530

    Article  CAS  Google Scholar 

  81. Martinez JI, Abad E, Gonzalez C, Flores F, Ortega J (2012) Improvement of scanning tunneling microscopy resolution with H-sensitized tips. Phys Rev Lett 108(24):246102

    Article  CAS  Google Scholar 

  82. Mohn F, Gross L, Moll N, Meyer G (2012) Imaging the charge distribution within a single molecule. Nat Nanotechnol 7(4):227–231

    Article  CAS  Google Scholar 

  83. Tromp RM, Van Loenen EJ, Demuth JE, Lang ND (1988) Tip electronic structure in scanning tunneling microscopy. Phys Rev B 37(15):9042–9045

    Article  CAS  Google Scholar 

  84. Chiutu C, Sweetman AM, Lakin AJ, Stannard A, Jarvis S, Kantorovich L, Dunn JL, Moriarty P (2012) Precise orientation of a single C60 molecule on the tip of a scanning probe microscope. Phys Rev Lett 108(26):268302

    Article  CAS  Google Scholar 

  85. Lakin AJ, Chiutu C, Sweetman AM, Moriarty P, Dunn JL (2013) Recovering molecular orientation from convoluted orbitals. Phys Rev B 88(3):035447

    Article  CAS  Google Scholar 

  86. Fink H-W, Stocker W, Schmid H (1990) Coherent point source electron beams. J Vac Sci Technol B 8(8):1323–1324

    Article  CAS  Google Scholar 

  87. Ottaviano L, Lozzi L, Santucci S (2003) Scanning Auger microscopy study of W tips for scanning tunneling microscopy. Rev Sci Instrum 74(7):3368

    Article  CAS  Google Scholar 

  88. Kirakosian A, Bennewitz R, Crain JN, Fauster T, Lin J-L, Petrovykh DY, Himpsel FJ (2001) Atomically accurate Si grating with 5.73 nm period. Appl Phys Lett 79(11):1608–1610

    Article  CAS  Google Scholar 

  89. Chaika AN, Fokin DA, Bozhko SI, Ionov AM, Debontridder F, Dubost V, Cren T, Roditchev D (2009) Regular stepped structures on clean Si(hhm)-7 × 7 surfaces. J Appl Phys 105(3):034304

    Article  CAS  Google Scholar 

  90. Chaika AN, Fokin DA, Bozhko SI, Ionov AM, Debontridder F, Dubost V, Cren T, Roditchev D (2009) Atomic structure of a regular Si(223) triple step staircase. Surf Sci 603(5):752–761

    Article  CAS  Google Scholar 

  91. Chaika AN, Semenov VN, Glebovskiy VG, Bozhko SI (2009) Scanning tunneling microscopy with single crystal W[001] tips: high resolution studies of Si(557)5 × 5 surface. Appl Phys Lett 95(17):173107

    Article  CAS  Google Scholar 

  92. Takayanagi K, Tanishiro Y, Takahashi M, Takahashi S (1985) Structural analysis of Si(111)-(7 × 7) by UHV-transmission electron diffraction and microscopy. J Vac Sci Technol A 3(3):1502–1506

    Article  CAS  Google Scholar 

  93. Wang YL, Gao H-J, Guo HM, Liu HW, Batyrev IG, McMahon WE, Zhang SB (2004) Tip size effect on the appearance of a STM image for complex surfaces: theory versus experiment for Si(111)-(7 × 7). Phys Rev B 70(7):073312

    Article  CAS  Google Scholar 

  94. Hamers RJ, Tromp RM, Demuth JE (1986) Surface electronic structure of Si(111)-(7 × 7) resolved in real space. Phys Rev Lett 56(18):1972–1975

    Article  CAS  Google Scholar 

  95. Tromp RM, Hamers RJ, Demuth JE (1986) Atomic and electronic contributions to Si(111)-(7 × 7) scanning tunneling-microscopy images. Phys Rev B 34(2):1388–1391

    Article  CAS  Google Scholar 

  96. Hamers RJ, Tromp RM, Demuth JE (1987) Electronic and geometric structure of Si(111)-(7 × 7) and Si(001) surfaces. Surf Sci 181(1–2):346–355

    Article  CAS  Google Scholar 

  97. Paz O, Brihuega I, Gomez-Rodriguez JM, Soler JM (2005) Tip and surface determination from experiments and simulations of scanning tunneling microscopy and spectroscopy. Phys Rev Lett 94(5):056103

    Article  CAS  Google Scholar 

  98. Dubois M, Perdigao L, Delerue C, Allan G, Grandidier B, Deresme D, Stievenard D (2005) Scanning tunneling microscopy and spectroscopy of reconstructed Si(100) surfaces. Phys Rev B 71(16):165322

    Article  CAS  Google Scholar 

  99. Hamers RJ, Tromp RM, Demuth JE (1987) Scanning tunneling microscopy of Si(001). Phys Rev B 34(8):5343–5357

    Article  Google Scholar 

  100. Wolkow RA (1992) Direct observation of an increase in buckled dimmers on Si(001) at low temperatures. Phys Rev Lett 68(17):2636–2639

    Article  CAS  Google Scholar 

  101. Garleff JK, Wenderoth M, Sauthoff K, Ulbrich RG, Rohlfing M (2004) 2 × 1 reconstructed Si(111) surface: STM experiments versus ab initio calculations. Phys Rev B 70(24):245424

    Article  CAS  Google Scholar 

  102. Zotti LA, Hofer WA, Giessibl FJ (2006) Electron scattering in scanning probe microscopy experiments. Chem Phys Lett 420(1–3):177–182

    Article  CAS  Google Scholar 

  103. Hallmark V, Chiang S, Rabalt J, Swalen J, Wilson R (1987) Observation of atomic corrugation on Au(111) by scanning tunneling microscopy. Phys Rev Lett 59(25):2879–2882

    Article  CAS  Google Scholar 

  104. Wintterlin J, Brune H, Hofer H, Behm R (1988) Atomic scale characterization of oxygen adsorbates on Al(111) by scanning tunneling microscopy. Appl Phys A 47(1):99–102

    Article  Google Scholar 

  105. Clarke ARH, Pethica JB, Nieminen JA, Besenbacher F, Lægsgaard E, Stensgaard I (1996) Quantitative scanning tunneling microscopy at atomic resolution: influence of forces and tip configuration. Phys Rev Lett 76(8):1276–1279

    Article  CAS  Google Scholar 

  106. Bobrov K, Mayne AJ, Dujardin G (2001) Atomic-scale imaging of insulating diamond through resonant electron injection. Nature 413(6856):616–619

    Article  CAS  Google Scholar 

  107. Castell MR, Dudarev SL, Briggs GAD, Sutton AP (1999) Unexpected differences in the surface electronic structure of NiO and CoO observed by STM and explained by first-principles theory. Phys Rev B 59(11):7342–7345

    Article  CAS  Google Scholar 

  108. Repp J, Meyer G, Paavilainen S, Olsson FE, Persson M (2005) Scanning tunneling spectroscopy of Cl vacancies in NaCl films: strong electron-phonon coupling in double-barrier tunneling junctions. Phys Rev Lett 95(22):225503

    Article  CAS  Google Scholar 

  109. Olsson FE, Paavilainen S, Persson M, Repp J, Meyer G (2007) Multiple charge states of Ag atoms on ultrathin NaCl films. Phys Rev Lett 98(17):176803

    Article  CAS  Google Scholar 

  110. Olsson FE, Persson M, Repp J, Meyer G (2005) Scanning tunneling microscopy and spectroscopy of NaCl overlayers on the stepped Cu(311) surface: experimental and theoretical study. Phys Rev B 71(7):075419

    Article  CAS  Google Scholar 

  111. Schoiswohl J, Agnoli S, Xu B, Surnev S, Sambi M, Ramsey MG, Granozzi G, Netzer FP (2005) Growth and thermal behaviour of NiO nanolayers on Pd(100). Surf Sci 599(1–3):1–13

    Article  CAS  Google Scholar 

  112. Caffio M, Atrei A, Cortigiani B, Rovida G (2006) STM study of the nanostructures prepared by deposition of NiO on Ag(001). J Phys Condens Matter 18:2379–2384

    Article  CAS  Google Scholar 

  113. Steurer W, Allegretti F, Surnev S, Barcaro G, Sementa L, Negreiros F, Fortunelli A, Netzer FP (2011) Metamorphosis of ultrathin Ni oxide nanostructures on Ag(100). Phys Rev B 84(11):115446

    Article  CAS  Google Scholar 

  114. Barth JV, Costantini G, Kern K (2005) Engineering atomic and molecular nanostructures at surfaces. Nature 437(7059):671–679

    Article  CAS  Google Scholar 

  115. Gambardella P, Stepanow S, Dmitriev A, Honolka J, de Groot FMF, Lingenfelder M, Gupta SS, Sarma DD, Bencok P, Stanescu S, Clair S, Pons S, Lin N, Seitsonen AP, Brune H, Barth JV, Kern K (2009) Supramolecular control of the magnetic anisotropy in two-dimensional high-spin Fe arrays at a metal interface. Nat Mater 8(3):189–193

    Article  CAS  Google Scholar 

  116. Krasnikov SA, Beggan JP, Sergeeva NN, Senge MO, Cafolla AA (2009) Ni(II) porphine nanolines grown on a Ag(111) surface at room temperature. Nanotechnology 20(13):135301

    Article  CAS  Google Scholar 

  117. Moriarty PJ (2010) Fullerene adsorption on semiconductor surfaces. Surf Sci Rep 65(7):175–227

    Article  CAS  Google Scholar 

  118. Krasnikov SA, Doyle CM, Sergeeva NN, Preobrajenski AB, Vinogradov NA, Sergeeva YN, Zakharov AA, Senge MO, Cafolla AA (2011) Formation of extended covalently bonded Ni porphyrin networks on the Au(111) surface. Nano Res 4(4):376–384

    Article  CAS  Google Scholar 

  119. Krasnikov SA, Bozhko SI, Radican K, Lubben O, Murphy BE, Vadapoo SR, Han-Chun W, Abid M, Semenov VN, Shvets IV (2011) Self-assembly and ordering of C60 on the WO2/W(110) surface. Nano Res 4(2):194–203

    Article  CAS  Google Scholar 

  120. Bozhko SI, Krasnikov SA, Lubben O, Murphy BE, Radican K, Semenov VN, Wu H-C, Bulfin B, Shvets IV (2011) Rotational transitions in a C60 monolayer on the WO2/W(110) surface. Phys Rev B 84(19):195412

    Article  CAS  Google Scholar 

  121. Mugarza A, Krull C, Robles R, Stepanow S, Ceballos G, Gambardella P (2011) Spin coupling and relaxation inside molecule–metal contacts. Nat Commun 2:490. doi:10.1038/ncomms1497

    Article  CAS  Google Scholar 

  122. Swart I, Sonnleitner T, Repp J (2011) Charge state control of molecules reveals modification of the tunneling barrier with intramolecular contrast. Nano Lett 11(4):1580–1584

    Article  CAS  Google Scholar 

  123. Beggan JP, Krasnikov SA, Sergeeva NN, Senge MO, Cafolla AA (2012) Control of the axial coordination of a surface-confined manganese(III) porphyrin complex. Nanotechnology 23(23):235606

    Article  CAS  Google Scholar 

  124. Murphy BE, Krasnikov SA, Cafolla AA, Sergeeva NN, Vinogradov NA, Beggan JP, Lübben O, Senge MO, Shvets IV (2012) Growth and ordering of Ni(II) diphenylporphyrin monolayers on Ag(111) and Ag/Si(111) studied by STM and LEED. J Phys Condens Matter 24(4):045005

    Article  CAS  Google Scholar 

  125. Bazarnik M, Brede J, Decker R, Wiesedanger R (2013) Tailoring molecular self-assembly of magnetic phthalocyanine molecules on Fe- and Co-intercalated graphene. ACS Nano 7(12):11341–11349

    Article  CAS  Google Scholar 

  126. Garnica M, Stradi D, Barja S, Calleja F, Díaz C, Alcamí M, Martín N, Vázquez de Parga AL, Martín F, Miranda R (2013) Long-range magnetic order in a purely organic 2D layer adsorbed on epitaxial graphene. Nat Phys 9(6):368–374

    Article  CAS  Google Scholar 

  127. Swart I, Gross L, Liljeroth P (2011) Single-molecule chemistry and physics explored by low-temperature scanning probe microscopy. Chem Commun 47(32):9011–9023

    Article  CAS  Google Scholar 

  128. Tersoff J, Hamann DR (1983) Theory and application for the scanning tunneling microscope. Phys Rev Lett 50(25):1998–2001

    Article  CAS  Google Scholar 

  129. Tersoff J, Hamann DR (1985) Theory of the scanning tunneling microscope. Phys Rev B 31(2):805–813

    Article  CAS  Google Scholar 

  130. Hofer WA, Garcia-Lekue A, Brune H (2004) The role of surface elasticity in giant corrugations observed by scanning tunneling microscopes. Chem Phys Lett 397(4–6):354–359

    Article  CAS  Google Scholar 

  131. Tersoff J, Lang ND (1990) Tip-dependent corrugation of graphite in scanning tunneling microscopy. Phys Rev Lett 65(9):1132–1135

    Article  CAS  Google Scholar 

  132. Chen CJ (1990) Origin of atomic resolution on metal surfaces in scanning tunneling microscopy. Phys Rev Lett 65(4):448–451

    Article  CAS  Google Scholar 

  133. Chen CJ (1990) Tunneling matrix elements in three-dimensional space: the derivative rule and the sum rule. Phys Rev B 42(14):8841–8857

    Article  CAS  Google Scholar 

  134. Chen CJ (1992) Effects of m ≠ 0 tip states in scanning tunneling microscopy: the explanation of corrugation reversal. Phys Rev Lett 69(11):1656–1659

    Article  CAS  Google Scholar 

  135. Sacks W (2000) Tip orbitals and the atomic corrugation of metal surfaces in scanning tunneling microscopy. Phys Rev B 61(11):7656–7668

    Article  CAS  Google Scholar 

  136. Suominen I, Nieminen J, Markiewicz RS, Bansil A (2011) Effect of orbital symmetry of the tip on scanning tunneling spectra of Bi2Sr2CaCu2O8+δ. Phys Rev B 84(1):014528

    Article  CAS  Google Scholar 

  137. Polok M, Fedorov DV, Bagrets A, Zahn P, Mertig I (2011) Evaluation of conduction eigenchannels of an adatom probed by an STM tip. Phys Rev B 83(24):245426

    Article  CAS  Google Scholar 

  138. Choi H, Longo RC, Huang M, Randall JN, Wallace RM, Cho K (2013) A density-functional theory study of tip electronic structures in scanning tunneling microscopy. Nanotechnology 24(10):105201

    Article  CAS  Google Scholar 

  139. Wright CA, Solares SD (2013) Computational study of tip apex symmetry characterization in high-resolution atomic force microscopy. J Phys D Appl Phys 46(15):155307

    Article  CAS  Google Scholar 

  140. Hembacher S, Giessibl FJ, Mannhart J (2004) Force microscopy with light-atom probes. Science 305(5682):380–383

    Article  CAS  Google Scholar 

  141. Wright CA, Solares SD (2011) On mapping subångström electron clouds with force microscopy. Nano Lett 11(11):5026–5033

    Article  CAS  Google Scholar 

  142. Wright CA, Solares SD (2012) Imaging of subatomic electron cloud interactions: effect of higher harmonics processing in noncontact atomic force microscopy. Appl Phys Lett 100(16):163104

    Article  CAS  Google Scholar 

  143. Binnig G, Garcia N, Rohrer H, Soler JM, Flores F (1984) Electron-metal-surface interaction potential with vacuum tunneling: observation of the image force. Phys Rev B 30(8):4816–4818

    Article  CAS  Google Scholar 

  144. Zheng NJ, Tsong IST (1990) Resonant-tunneling theory of imaging close-packed metal surfaces by scanning tunneling microscopy. Phys Rev B 41(5):2671–2677

    Article  CAS  Google Scholar 

  145. Hofer WA, Foster AS, Shluger AL (2003) Theories of scanning probe microscopes at the atomic scale. Rev Mod Phys 75(4):1287–1331

    Article  CAS  Google Scholar 

  146. Hofer WA (2003) Challenges and errors: interpreting high resolution images in scanning tunneling microscopy. Prog Surf Sci 71(5–8):147–183

    Article  CAS  Google Scholar 

  147. Jelınek P, Shvec M, Pou P, Perez R, Chab V (2008) Tip-induced reduction of the resonant tunneling current on semiconductor surfaces. Phys Rev Lett 101(17):176101

    Article  CAS  Google Scholar 

  148. Bryant A, Smith DPE, Binnig G, Harrison WA, Quate CF (1986) Anomalous distance dependence in scanning tunneling microscopy. Appl Phys Lett 49(15):936–938

    Article  CAS  Google Scholar 

  149. Bode M, Pascal R, Wiesendanger R (1996) Distance-dependent STM-study of the W(110)/C-R(15 × 3) surface. Z Phys B 101(1):103–107

    Article  CAS  Google Scholar 

  150. Wiesendanger R, Bode M, Pascal R, Allers W, Schwarz UD (1996) Issues of atomic-resolution structure and chemical analysis by scanning probe microscopy and spectroscopy. J Vac Sci Technol A 14(3):1161–1167

    Article  CAS  Google Scholar 

  151. Klijn J, Sacharow L, Meyer C, Blugel S, Morgenstern M, Wiesendanger R (2003) STM measurements on the InAs(110) surface directly compared with surface electronic structure calculations. Phys Rev B 68(20):205327

    Article  CAS  Google Scholar 

  152. Calleja F, Arnau A, Hinarejos JJ, Vazquez de Parga AL, Hofer WA, Echenique PM, Miranda R (2004) Contrast reversal and shape changes of atomic adsorbates measured with scanning tunneling microscopy. Phys Rev Lett 92(20):206101

    Article  CAS  Google Scholar 

  153. Blanco JM, González C, Jelínek P, Ortega J, Flores F, Pérez R, Rose M, Salmeron M, Méndez J, Wintterlin J, Ertl G (2005) Origin of contrast in STM images of oxygen on Pd(111) and its dependence on tip structure and tunneling parameters. Phys Rev B 71(11):113402

    Article  CAS  Google Scholar 

  154. Woolcot T, Teobaldi G, Pang CL, Beglitis NS, Fisher AJ, Hofer WA, Thornton G (2012) Scanning tunneling microscopy contrast mechanisms for TiO2. Phys Rev Lett 109(15):156105

    Article  CAS  Google Scholar 

  155. Mönig H, Todorovic M, Baykara MZ, Schwendemann TC, Rodrigo L, Altman EI, Pérez R, Schwarz UD (2013) Understanding scanning tunneling microscopy contrast mechanisms on metal oxides: a case study. ACS Nano 7(11):10233–10244

    Article  CAS  Google Scholar 

  156. Ondracek M, Pou P, Rozsıval V, Gonzalez C, Jelınek P, Perez R (2011) Forces and currents in carbon nanostructures: are we imaging atoms? Phys Rev Lett 106(17):176101

    Article  CAS  Google Scholar 

  157. Ondracek M, Gonzalez C, Jelınek P (2012) Reversal of atomic contrast in scanning probe microscopy on (111) metal surfaces. J Phys Condens Matter 24(8):084003

    Article  CAS  Google Scholar 

  158. Whangbo M-H, Liang W, Ren J, Magonov SN, Wawkuschewski AJ (1994) Structural and electronic properties of graphite and graphite intercalation compounds MCs (M = K, Rb, Cs) governing their scanning tunneling microscopy images. J Phys Chem 98(31):7602–7607

    Article  CAS  Google Scholar 

  159. Teobaldi G, Inami E, Kanasaki J, Tanimura K, Shluger AL (2012) Role of applied bias and tip electronic structure in the scanning tunneling microscopy imaging of highly oriented pyrolytic graphite. Phys Rev B 85(8):085433

    Article  CAS  Google Scholar 

  160. Chaika AN, Bozhko SI (2005) Atomic structure of the Cu(410)-O surface: STM visualization of oxygen and copper atoms. JETP Lett 82(7):416–420

    Article  CAS  Google Scholar 

  161. Ternes M, Gonzalez C, Lutz CP, Hapala P, Giessibl FJ, Jelınek P, Heinrich AJ (2011) Interplay of conductance, force, and structural change in metallic point contacts. Phys Rev Lett 106(1):016802

    Article  CAS  Google Scholar 

  162. Scheer E, Agrait N, Cuevas JC, Yeyati AL, Ludoph B, Martin-Rodero A, Bollinger GR, Van Ruitenbeek JM, Urbina C (1998) The signature of chemical valence in the electrical conduction through a single-atom contact. Nature 394(6689):154–157

    Article  CAS  Google Scholar 

  163. Neel N, Kröger J, Limot L, Palotas K, Hofer WA, Berndt R (2007) Conductance and Kondo effect in a controlled single-atom contact. Phys Rev Lett 98(1):016801

    Article  CAS  Google Scholar 

  164. Dias LG, Leitão AA, Achete CA, Blum R-P, Niehus H, Capaz RB (2007) Chemical identification in the Cu3Au(100) surface using scanning tunneling microscopy and first-principles calculations. Surf Sci 601(23):5540–5545

    Article  CAS  Google Scholar 

  165. Ruan L, Besenbacher F, Stensgaard I, Laegsgaard E (1993) Atom resolved discrimination of chemically different elements on metal surfaces. Phys Rev Lett 70(26):4079–4082

    Article  CAS  Google Scholar 

  166. Diebold U, Li S-C, Schmid M (2010) Oxide surface science. Annu Rev Phys Chem 61:129–148

    Article  CAS  Google Scholar 

  167. Knudsen J, Merte LR, Peng G, Vang RT, Resta A, Laegsgaard E, Andersen JN, Mavrikakis M, Besenbacher F (2010) Low-temperature, CO oxidation on Ni(111) and on a Au/Ni(111) surface alloy. ACS Nano 4(8):4380–4387

    Article  CAS  Google Scholar 

  168. Baykara MZ, Todorović M, Mönig H, Schwendemann TC, Ünverdi Ö, Rodrigo L, Altman EI, Pérez R, Schwarz UD (2013) Atom-specific forces and defect identification on surface-oxidized Cu(100) with combined 3D-AFM and STM measurements. Phys Rev B 87(15):155414

    Article  CAS  Google Scholar 

  169. Gauthier Y, Dolle P, Baudoing-Savois R, Hebenstreit W, Platzgummer E, Schmid M, Varga P (1998) Chemical ordering and reconstruction of Pt25Co75(100): an LEED/STM study. Surf Sci 396(1–3):137–155

    Article  CAS  Google Scholar 

  170. Hebenstreit W, Ritz G, Schmid M, Biedermann A, Varga P (1997) Segregation and reconstructions of PtxNi1-x(100). Surf Sci 388(1–3):150–161

    Article  CAS  Google Scholar 

  171. Hebenstreit ELD, Hebenstreit W, Schmid P, Varga P (1999) Pt25Rh75(111), (110), and (100) studied by scanning tunneling microscopy with chemical contrast. Surf Sci 441(2–3):441–453

    Article  CAS  Google Scholar 

  172. Schmid M, Varga P (2002) Segregation and surface chemical ordering – an experimental view on the atomic scale, Chapter 4. In: Woodruff DP (ed) The chemical physics of solid surfaces, vol 10, Surface alloys and Alloy surfaces. Elsevier, Amsterdam, 2002

    Google Scholar 

  173. Yashina LV, Püttner R, Volykhov AA, Stojanov P, Riley J, Vassiliev SY, Chaika AN, Dedyulin SN, Tamm ME, Vyalikh DV, Belogorokhov AI (2012) Atomic geometry and electron structure of the GaTe(\( 10\overline{2} \)) surface. Phys Rev B 85(7):075409

    Article  CAS  Google Scholar 

  174. Hofer WA, Ritz G, Hebenstreit W, Schmid M, Varga P, Redinger J, Podloucky R (1998) Scanning tunneling microscopy of binary-alloy surfaces: is chemical contrast a consequence of alloying? Surf Sci 405(2–3):L514–L519

    Article  CAS  Google Scholar 

  175. Hofer WA, Redinger J (2000) Scanning tunneling microscopy of binary alloys: first principles calculation of the current for PtX(100) surfaces. Surf Sci 447(1–3):51–61

    Article  CAS  Google Scholar 

  176. Serrate D, Ferriani P, Yoshida Y, Hla S-W, Menzel M, von Bergmann K, Heinze S, Kubetzka A, Wiesendanger R (2010) Imaging and manipulating the spin direction of individual atoms. Nat Nanotechnol 5(5):350–353

    Article  CAS  Google Scholar 

  177. Giessibl FJ, Hembacher S, Bielefeldt H, Mannhart J (2000) Subatomic features on the silicon (111)-(7 × 7) surface observed by atomic force microscopy. Science 289(5478):422–425

    Article  CAS  Google Scholar 

  178. Hug HJ, Lantz MA, Abdurixit A, van Schendel PJA, Hoffmann R, Kappenberger P, Baratoff A (2001) Subatomic features in atomic force microscopy images. Science 29(5513):2509a

    Article  Google Scholar 

  179. Giessibl FJ, Bielefeldt H, Hembacher S, Mannhart J (2001) Imaging of atomic orbitals with the atomic force microscope – experiments and simulations. Ann Phys 10(11–12):887–910

    Article  CAS  Google Scholar 

  180. Huang M, Cuma M, Liu F (2003) Seeing the atomic orbital: first-principles study of the effect of tip termination on atomic force microscopy. Phys Rev Lett 90(25):256101

    Article  CAS  Google Scholar 

  181. Chen CJ (2006) Possibility of imaging lateral profiles of individual tetrahedral hybrid orbitals in real space. Nanotechnology 17(7):S195–S200

    Article  CAS  Google Scholar 

  182. Campbellova A, Ondracek M, Pou P, Perez R, Klapetek P, Jelınek P (2011) ‘Sub-atomic’ resolution of non-contact atomic force microscope images induced by a heterogeneous tip structure: a density functional theory study. Nanotechnology 22(29):295710

    Article  Google Scholar 

  183. Aristov VY, Urbanik G, Kummer K, Vyalikh DV, Molodtsova OV, Preobrajenski AB, Zakharov AA, Hess C, Hänke T, Büchner B, Vobornik I, Fujii J, Panaccione G, Ossipyan YA, Knupfer M (2010) Graphene synthesis on cubic SiC/Si wafers: perspectives for mass production of graphene-based electronic devices. Nano Lett 10(3):992–995

    Article  CAS  Google Scholar 

  184. Fasolino A, Los JH, Katsnelson MI (2007) Intrinsic ripples in graphene. Nature Mater 6(11):858–861

    Article  CAS  Google Scholar 

  185. Gross L, Mohn F, Moll N, Schuler B, Criado A, Guitian E, Pena D, Gourdon A, Meyer G (2012) Bond-order discrimination by atomic force microscopy. Science 337(6100):1326–1329

    Article  CAS  Google Scholar 

  186. Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78(1):013705

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Academy of Sciences, Russian Foundation for Basic Research (grants № 11-02-01256, 14-02-01234, 11-02-01253, 14-02-00949, 13-02-00781) and Marie Curie International Incoming Fellowship project within the 7th European Community Framework Programme. The author is very grateful to S. N. Molotkov, S. I. Bozhko, S. S. Nazin, V. N. Semenov, A. M. Ionov, V. Yu. Aristov, M. G. Lazarev, N. N. Orlova, A. N. Myagkov, K. N. Eltsov, A. N. Klimov, V. M. Shevlyuga, I. V. Shvets, S. Murphy, S. A. Krasnikov, O. Lübben, B. E. Murphy, K. Radican, A. L. Vazquez de Parga, and F. J. Giessibl for their help and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander N. Chaika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chaika, A.N. (2015). High Resolution STM Imaging. In: Kumar, C.S.S.R. (eds) Surface Science Tools for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44551-8_15

Download citation

Publish with us

Policies and ethics