Skip to main content
Log in

Determination of true values of the thermal conductivity of inert gases at atmospheric pressure and temperatures from the normal boiling point to 6000°K

  • Published:
Journal of engineering physics Aims and scope

Abstract

True values of the thermal conductivity are calculated for neon, argon, krypton, and xenon over the temperature range from the normal boiling point to 6000°K at atmospheric pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Standard Data Tables: Dynamic Viscosity and Thermal Conductivity of Helium, Neon, Argon, Krypton and Xenon at Atmospheric Pressure and Temperatures from the Normal Boiling Point to 2500°K [in Russian], Standartov, Moscow (1982).

  2. N. B. Vargaftik and Yu. D. Vasilevskaya, “Thermal conductivity of krypton and xenon at high temperatures to 5000°K,” Inzh.-Fiz. Zh.,39, No. 5, 852–858 (1980).

    Google Scholar 

  3. N. B. Vargaftik and Yu. D. Vasilevskaya, “Thermal conductivity of neon to 5000°K and argon to 6000°K,” Inzh.-Fiz. Zh.,40, No. 3, 472–481 (1981).

    Google Scholar 

  4. N. B. Vargaftik and Yu. D. Vasilevskaya, “Thermal conductivity of helium at high temperature, 300–6000°K,” Inzh.-Fiz. Zh.,42, No. 3, 412–417 (1982).

    Google Scholar 

  5. E. F. Smiley, “The measurement of thermal conductivity of gases at high temperatures with shock tube; experimental results in argon at temperatures between 1000°K and 3000°K,” Doctoral Thesis, Catholic University of America, Washington (1957), p. 132.

    Google Scholar 

  6. A. G. Shashkov, T. N. Abramenko, and V. I. Aleinikova, “Determination of true thermal conductivity of helium and nitrogen at atmospheric pressure and temperatures from the normal boiling point to 6700°K,” Inzh.-Fiz. Zh.,49, No. 1, 83–93 (1985).

    Google Scholar 

  7. A. V. Lykov, Thermal Conductivity Theory [in Russian], Vyssaya Shkola, Moscow (1967).

    Google Scholar 

  8. W. G. Kannuluik and E. H. Carman, “The thermal conductivity of rare gases,” Proc. R. Soc, Ser. B,65, 701–709 (1952).

    Google Scholar 

  9. L. S. Zaitseva, “Experimental study of thermal conductivity of monatomic gases over a wide temperature interval,” Inzh.-Fiz. Zh.,29, No. 4, 497–505 (1959).

    Google Scholar 

  10. B. N. Srivastava and A. D. Gupta, “Thermal conductivity of binary mixtures of ammonia and inert gases,” Brit. J. Appl. Phys.,18, No. 7, 945–951 (1967).

    Google Scholar 

  11. F. G. Keyes, “Thermal conductivity of gases,” Trans. Am. Soc. Mech. Eng.,76, No. 5, 809–816 (1954).

    Google Scholar 

  12. V. K. Saxena, M. P. Saxena, and S. C. Saxena, “Measurement of thermal conductivity of gases using thermal diffusion column: neon,” Ind. J. Phys.,49, No. 11, 597–604 (1966).

    Google Scholar 

  13. I. M. Gandhi and S. C. Saxena, “Thermal conductivities of the gas mixtures D2-N2 and D2-He-Ne,” Brit. J. Appl. Phys.,18, No. 6, 807–812 (1967).

    Google Scholar 

  14. V. K. Saxena and S. C. Saxena, “Measurement of the thermal conductivity of neon using hot-wire type thermal diffusion columns,” J. Chem. Phys.,48, No. 12, 5662–5666 (1968).

    Google Scholar 

  15. J. V. Sengers, W. T. Bolk, and C. I. Stigter, “The thermal conductivity of neon between 25 and 75°C at pressures up to 2600 atm,” Physica,30, No. 5, 1018–1026 (1964).

    Google Scholar 

  16. N. B. Vargaftik and V. Ya. Yakush, “Experimental study of thermal conductivity of neon, krypton, and xenon over a wide temperature range,” Inzh.-Fiz. Zh.,21, No. 3, 491–499 (1970).

    Google Scholar 

  17. R. Tufeu, B. Le Neindre, and P. Bury, “Étude expérimentale de la conductivitié thermique du neon,” C. R. Acad. Sci. Paris, Ser. B,271, No. 13, 589–592 (1970).

    Google Scholar 

  18. T. N. Vasil'kovskaya and I. F. Golubev, “Thermal conductivity of neon at temperatures from 295 to 566°K and pressures from 1 to 400 bar,” Tr. GIAP, No. 8, 99–101 (1971).

    Google Scholar 

  19. I. F. Golubev and I. B. Shpagina, “Thermal conductivity of neon at temperatures from −195.3 to 74.5°C at pressures to 500 kg/cm2,” Tr. GIAP, No. 8, 91–98 (1971).

    Google Scholar 

  20. G. S. Springer and E. W. Wingeier, “Thermal conductivity of neon, argon, and xenon at high temperatures,” J. Chem. Phys.,59, No. 5, 2747–2750 (1973).

    Google Scholar 

  21. P. C. Jain and S. C. Saxena, “Thermal conductivity of neon in the temperature range 400–2400°K,” Chem. Phys. Lett.,28, No. 3, 454–456 (1974).

    Google Scholar 

  22. B. J. Jody and S. C. Saxena, “Thermal conductivity of neon from heat transfer measurements in the continuum and temperature-jump regimes,” Phys. Fluids,18, No. 1, 20–28 (1975).

    Google Scholar 

  23. L. P. Zarkova, “Experimental determination of the thermal conductivity of cesium and mercury vapor and inert gases,” Candidate's Dissertation, Sofiya (1976).

  24. E. I. Marchenkov and V. I. Aleinikova, “Study of neon and argon-neon mixture thermal conductivity at high temperature,” Inzh.-Fiz. Zh.,33, No. 5, 848–856 (1977).

    Google Scholar 

  25. D. I. Collins and V. A. Menard, “Measurement of thermal conductivity of inert gases in the temperature range 1500–5000°K,” Teploperedacha, Ser. C,88, No. 1, 56–59 (1966).

    Google Scholar 

  26. S. C. Saxena, “Determination of the thermal conductivity of gases by shock-tube studies,” High Temp. Sci.,4, No. 6, 517–540 (1972).

    Google Scholar 

  27. N. A. Nesterov and V. M. Sudnik, “The question of thermal conductivity of gaseous neon and krypton at low temperatures and atmospheric pressure,” Inzh.-Fiz. Zh.,30, No. 5, 863–867 (1976).

    Google Scholar 

  28. W. F. Shottky, “Zur Messung der Wärmeleitfähigkeit von Gases bei hoheren Temperaturen,” Zs. Elektrochem.,56, No. 9, 889–892 (1952).

    Google Scholar 

  29. A. Eucken, “Ueber die Tempraturabhaengigkeit der Wärmeleitfähigkeit einger Gasse,” Phys. Zeit.,12, 1101–1107 (1911).

    Google Scholar 

  30. F. G. Keyes, “Thermal conductivity of gases,” Trans. Am. Soc. Mech. Eng.,77, No. 8, 1395–1396 (1955).

    Google Scholar 

  31. K. L. Schäfer and F. W. Reiter, “Eine Messmethode fuer die Ermittlung des Wärmeleitvermögens bei 1100°C,” Zs. Elektrochem.,6, No. 9, 1230–1235 (1957).

    Google Scholar 

  32. B. H. Zeibland and J. T. A. Burton, “The thermal conductivity of nitrogen and argon in the liquid and gaseous states,” Brit. J. Appl. Phys.,9, No. 2, 52–59 (1958).

    Google Scholar 

  33. N. V. Tsederberg, V. N. Popov, and N. A. Morozova, “Experimental study of argon thermal conductivity,” Teploénergetika, No. 6, 82–87 (1960).

    Google Scholar 

  34. R. G. Wines, “Measurement of the thermal conductivities of gases at high temperatures,” J. Heat Transfer ASME,82, No. 1, 48–52 (1960).

    Google Scholar 

  35. A. Michels, J. V. Sengers, and L. Van de Klundert, “The thermal conductivity or argon at elevated densities,” Physica,29, 149–160 (1963).

    Google Scholar 

  36. L. D. Ikenberry and S. A. Riece, “On the kinetic theory of dense fluids. XIV. Experimental and theoretical studies of conductivity in liquid Ar, Kr, Xe, CH4,” J. Chem, Phys.,39, No. 6, 1561–1571 (1963).

    Google Scholar 

  37. N. B. Vargaftik and N. Kh. Zimina, “Thermal conductivity of argon at high temperatures,” Teplofiz. Vys. Temp.,2, No. 5, 716–724 (1964).

    Google Scholar 

  38. D. L. Timrot and A. S. Umanskii, “Study of thermal conductivity of hydrogen and argon,” Teplofiz. Vys. Temp.,4, No. 2, 289–293 (1966).

    Google Scholar 

  39. R. S. Gambhir and S. C. Saxena, “Thermal conductivity of binary and ternary mixtures of krypton, argon, and helium,” Mol. Phys.,11, No. 3, 233–241 (1966).

    Google Scholar 

  40. B. M. Rosenbaum, S. Oshen, and G. Thodos, “Thermal conductivity of argon in the dense gaseous and liquid regions,” J. Chem. Phys.,44, No. 8, 2831–2838 (1966).

    Google Scholar 

  41. A. D. Gupta, “Thermal conductivity of binary mixtures of sulphur dioxide and inert gases,” Int. J. Heat Mass Transfer,10, No. 7, 921–929 (1967).

    Google Scholar 

  42. A. I. Rothman and L. A. Bromley, “High temperature thermal conductivity of gases. Measurements of nitrogen, carbon dioxide, argon, and nitrogen-carbon dioxide mixtures at temperatures up to 775°C,” Ind. Eng. Chem,47, No. 5, 889–906 (1955).

    Google Scholar 

  43. B. J. Bailey and K. Kellner, “The thermal conductivity of liquid and gaseous argon,” Physica,39 No. 2–3, 444–462 (1968).

    Google Scholar 

  44. I. F. Golubev and I. B. Shpagina, “Thermal conductivity of argon at temperatures from −175.57 to 93.3°C and pressures from 1 to 500 kg/cm2,” in: Chemistry and Technology of Nitrogen Fertilizers and Organic Synthesis Products [in Russian], No. 24, ONTI GIAP, Moscow (1969).

    Google Scholar 

  45. R. A. Matula, “Thermal conductivity of rarefied gases and gas mixtures at high temperatures,” Teploperedach., Ser. C, No. 3, 40–49 (1968).

    Google Scholar 

  46. Kh. I. Amirkhanov, A. P. Adamov, and G. D. Gasanov, “Experimental study of argon thermal conductivity at low temperatures,” Inzh.-Fiz. Zh.,22, No. 5, 835–842 (1972).

    Google Scholar 

  47. A. G. Shashkov and F. P. Kamchatov, “Experimental determination of thermal conductivity of binary gas mixtures,” Inzh.-Fiz. Zh.,22, No. 5, 835–842 (1972).

    Google Scholar 

  48. F. M. Faubert and G. S. Springer, “Measurement of the thermal conductivity of argon, krypton, and nitrogen in the range 800–2000°K,” J. Chem. Phys.,57, No. 6, 2333–2340 (1972).

    Google Scholar 

  49. Yu. P. Zemlyanykh, “Experimental study of thermal conductivity of gases at high temperatures in a shock tube,” Author's Abstract of Candidate's Dissertation, Odessa (1972).

  50. N. B. Vargaftik, Yu. K. Vinogradov, and I. A. Khludnevskii, “Study of gas thermal conductivity by the periodic heating method,” in: Thermophysical Properties of Gases [in Russian], Moscow (1973), pp. 6–9.

  51. S. P. Chen, “Determination of thermal conductivity of gases at high temperatures by the column method,” Doctoral Dissertation, University of Illinois (1974).

  52. A. G. Shashkov, N. A. Nesterov, V. M. Sudnik, and V. I. Aleinikova, “Experimental study of inert gas thermal conductivity at low temperatures,” Inzh.-Fiz. Zh.,30, No. 4, 671–679 (1976).

    Google Scholar 

  53. E. I. Marchenkov, “Study of thermal conductivity of argon-helium mixtures and pure gases at high temperatures,” Author's Abstract of Candidate's Dissertation, Minsk (1975).

  54. V. K. Saxena and S. C. Saxena, “Thermal conductivity of krypton and xenon in the temperature range 350–1500°K,” J. Chem. Phys.,51, No. 8, 3361–3368 (1969).

    Google Scholar 

  55. R. Tufeu, B. Le Neindre, and P. Bary, “Étude experimentale de la conductivitié thermique du krypton á haute pression,” C. R. Acad. Sci. Paris, Ser. B,273, No. 2, 61–64 (1971).

    Google Scholar 

  56. P. C. Jain and S. C. Saxena, “Thermal conductivity of krypton in the temperature range 400–2500°K,” J. Chem. Phys.,63, No. 11, 5052–5053 (1975).

    Google Scholar 

  57. A. A. Voshchinin, V. V. Kerzhentsov, E. A. Studnikov, and L. V. Yakush, “Measurement of xenon thermal conductivity at high temperatures,” Izv. Vyssh. Uchebn. Zaved., Énerg., No. 7, 88–93 (1975).

    Google Scholar 

  58. N. A. Nesterov, “Thermal conductivity of monatomic gases and their binary mixtures at atmospheric pressure and temperatures of 90–273°K,” Author's Abstract of Candidate's Dissertation, Minsk (1983).

  59. R. Tufeu, B. Le Neindre, and P. Bary, “Étude experimentale de la conductivitié thermique du xénon,” C. R. Acad. Sci. Paris, Ser. B,273, No. 3, 113–115 (1971).

    Google Scholar 

  60. I. M. Gandhi and S. C. Saxena, “Thermal conductivity of binary and ternary mixtures of helium, neon, and xenon,” Mol. Phys.,12, No. 1, 57–68 (1967).

    Google Scholar 

  61. S. S. Bakulin, S. A. Ulybin, and S. P. Zherdev, “Experimental study of xenon thermal conductivity inthe rarefied state at temperatures of 400–1400°K,” Teplofiz. Vys. Temp.,13, No. 4, 760–763 (1975).

    Google Scholar 

  62. B. J. Jody, S. C. Saxena, V. P. S. Nein, and R. A. Aziz, “Transport properties and interatomic potentials for xenon,” High-Temp. Sci.,8, No. 2, 343–352 (1976).

    Google Scholar 

  63. A. G. Shashkov, N. A. Nesterov, and O. A. Kolenchits, “Thermal conductivity of inert gases over a wide temperature range,” Inzh.-Fiz. Zh.,43, No. 5, 788–795 (1982).

    Google Scholar 

  64. J. O. Hirschfelder, C. Curtiss, and R. Bird, Molecular Theory of Gases and Liquids, Wiley (1964).

  65. Tables of Collision Integrals and Second Virial Coefficients for the (m-6-8) Intermolecular Potential Function. Nat. Stand. Ref. Data Ser., U.S. Nat. Bur. Stand. (1974).

  66. V. M. Sevast'yanov and N. A. Zykov, “Transport coefficients of monatomic gases in the temperature range 100–3000°K,” Inzh.-Fiz. Zh.,34, No. 1, 118–125 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 49, No. 2, pp. 256–265, August, 1985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shashkov, A.G., Abramenko, T.N. & Aleinikova, V.I. Determination of true values of the thermal conductivity of inert gases at atmospheric pressure and temperatures from the normal boiling point to 6000°K. Journal of Engineering Physics 49, 942–950 (1985). https://doi.org/10.1007/BF00872647

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00872647

Keywords

Navigation