Antonie van Leeuwenhoek

, Volume 68, Issue 3, pp 203–208 | Cite as

Hexavalent-chromium reduction by a chromate-resistantBacillus sp. strain

  • Jesus Campos
  • Mauro Martinez-Pacheco
  • Carlos Cervantes
Research Papers

Abstract

Bacillus strain QC1-2, isolated from a chromium-polluted zone, was selected by its high ability to both tolerate and reduce hexavalent chromium [Cr(VI)] to less-toxic trivalent chromium [Cr(III)]. Cell suspensions of strain QC1-2 rapidly reduced Cr(VI), in both aerobic and anaerobic conditions, to Cr(III) which remained in the supernatant. Cr(VI) reduction was dependent on the addition of glucose but sulfate, an inhibitor of chromate transport, had no effect. Studies with permeabilized cells and cell extracts showed that the Cr(VI) reductase of strain QC1-2 is a soluble NADH-dependent enzyme.

Key words

chromate reduction chromate resistance Bacillus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Public Health Association (1971) Chromium, pp 115–159. In: Standard Methods for the Examination of Water and Wastewater. Amer. Public Health Assoc., New YorkGoogle Scholar
  2. Basabe JR, Lee CA & Weiss RL (1979) Enzyme assays using permeabilized cells ofNeurospora. Anal. Biochem. 92: 356–360Google Scholar
  3. Bopp LH & Ehrlich HL (1988) Chromate resistance and reduction inPseudomonas fluorescens LB300. Arch. Microbiol. 150: 426–431Google Scholar
  4. Cervantes C (1991) Bacterial interactions with chromate. Antonie van Leeuwenhoek 59: 229–233Google Scholar
  5. Cervantes C & Ohtake H (1988) Plasmid-determined chromate resistance inPseudomonas aeruginosa. FEMS Microbiol. Lett. 56: 173–176Google Scholar
  6. Cervantes C & Silver S (1992) Bacterial chromate resistance and chromate reduction. Plasmid 27: 65–71Google Scholar
  7. Das S & Chandra AL (1990) Chromate reduction inStreptomyces. Experientia 46: 731–733Google Scholar
  8. Gvozdyak PL, Mogilavich NF, Rylskii AF & Grishchenko NI (1986) Reduction of hexavalent chromium by collection strains of bacteria. Mikrobiologiya 55: 962–965Google Scholar
  9. Holt JG (Ed.) (1977) The shorter Bergey's Manual of Determinative Microbiology. 8th Ed. Williams & Wilkins, BaltimoreGoogle Scholar
  10. Horitsu H, Futo S, Miyazawa Y, Ogai S & Kawai K (1987) Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerantPseudomonas ambigua G-1. Agric. Biol. Chem. 51: 2417–2420Google Scholar
  11. Ishibashi Y, Cervantes C & Silver S (1990) Chromium reduction inPseudomonas putida. Appl. Environ. Microbiol. 56: 2268–2270Google Scholar
  12. Lowry OH, Rosebrough NJ, Farr AL & Randall RJ (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275Google Scholar
  13. Ohtake H, Cervantes C & Silver S (1987) Decreased chromate uptake inPseudomonas fluorescens carrying a chromate resistance plasmid. J. Bacteriol. 169: 3853–3856Google Scholar
  14. Suzuki T, Miyata N, Horitsu H, Kawai K, Takamizawa K, Tai Y & Okazaki M (1992) NAD(P)H-dependent chromium (VI) reductase ofPseudomonas ambigua G-1: a Cr(V) intermediate is formed during the reduction of Cr(VI) to Cr(III). J. Bacteriol. 174: 5340–5345Google Scholar
  15. Wang PC, Mori T, Komori K, Sasatsu M, Toda K & Ohtake H (1989) Isolation and characterization of anEnterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl. Environ. Microbiol. 55: 1665–1669Google Scholar
  16. Wang PC, Mori T, Toda K & Ohtake H (1990) Membrane-associated chromate reductase activity fromEnterobacter cloacae. J. Bacteriol. 172: 1670–1672Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Jesus Campos
    • 1
  • Mauro Martinez-Pacheco
    • 1
  • Carlos Cervantes
    • 1
  1. 1.Instituto de Investigaciones Quimico-BiologicasUniversidad MichoacanaMorelia, Mich.Mexico

Personalised recommendations