Skip to main content
Log in

Optospectroscopic studies of the cathodic jet of a laminar plasmatron

  • Published:
Journal of engineering physics Aims and scope

Abstract

The structure and temperature field of a cathodic jet near the external surface of the nozzle in a laminar plasmatron are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Zh. Zh. Zheenbaev and V. S. Engel'sht, Laminar Plasmotron [in Russian], ILIM, Frunze (1975).

    Google Scholar 

  2. V. Dembovski, Plasma Metallurgy [in Russian], Metallurgiya, Moscow (1981).

    Google Scholar 

  3. A. M. Malakhov, Yu. T. Nikitin, and A. V. Petrov, “Gas-thermal sputtering with a laminar plasma flow,” in: Abstracts of Reports at the 8th All-Union Conference on Low-Temperature Plasma Generators, Institute of Thermal Physics, Siberian Branch, Academy of Sciences of the USSR, Novosibirsk (1980), p. 3, pp. 196–200.

    Google Scholar 

  4. G. S. Antonov, V. S. Loskutov, B. M. Solov'ev, et al., “Study of the behavior of particles of tungsten powder during sputtering in a low-temperature plasma,” in: Low-Temperature Plasma Generators [in Russian], Énergiya, Moscow (1969), pp. 490–500.

    Google Scholar 

  5. A. V. Donskoi and V. S. Klubnikin, Electroplasma Processes and Setups in Machine Building [in Russian], Mashinostroenie, Leningrad (1979).

    Google Scholar 

  6. V. V. Kudinov, Plasma Coatings [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  7. Zh. Zh. Zheenbaev and V. S. Engel'sht, Two-Jet Plasmotron [in Russian], ILIM, Frunze (1983).

    Google Scholar 

  8. M. F. Zhukov, A. S. Koroteev, and B. A. Uryukov, Applied Thermal Plasma Dynamics [in Russian], Nauka, Novosibirsk (1975).

    Google Scholar 

  9. B. A. Uryukov, “Theory of erosion of electrodes in nonstationary spots of an electric arc,” in: Experimental Studies of Plasmotrons [in Russian], Nauka, Novosibirsk (1977), pp. 371–383.

    Google Scholar 

  10. N. I. Chubrik, V. D. Shimanovich, E. A. Ershov-Pavlov, et al., “ASK-3 automated spectrometric complex for plasma diagnostics,” Prib. Tekh. Eksp., No. 4, 264–265 (1981).

    Google Scholar 

  11. N. S. Vorypaeva, L. S. Nikolaevskii, and I. V. Podmoshenskii, “State of equilibrium of strongly ionized nitrogen at P=0.075 atm,” Teplofiz. Vys. Temp.,14, No. 3, 690–694 (1976).

    Google Scholar 

  12. E. I. Asinovskii, A. V. Kirilin, and G. A. Kobzev, “Continuous emission of a nitrogen plasma,” Teplofiz. Vys. Temp.,6, No. 4, 746–749 (1968).

    Google Scholar 

  13. L. G. D'yachov, O. A. Golubev, G. A. Kobzev, and A. N. Vargin, “Studies of continuum radiation from nitrogen, oxygen, and carbon dioxide plasmas in the vacuum ultraviolet region,” JQRST,20, No. 2, 175–189 (1978).

    Google Scholar 

  14. L. I. Kiselevskii, V. A. Gubkevich, E. A. Ershov-Pavlov, et al., “Automated system for comprehensive study of low-temperature plasma,” Dokl. Akad. Nauk BSSR,24, No. 1, 973–976 (1982).

    Google Scholar 

  15. W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities, NBS, Washington (1966).

    Google Scholar 

  16. H. W. Drawin and P. Felenbok, Data for Plasmas in Local Thermodynamic Equilibrium, Gauthier-Villars Editeur, Paris (1965).

    Google Scholar 

  17. G. V. Koval'skaya and V. G. Sevost'yanenko, “Composition and thermodynamic properties of plasma,” in: Physical Kinetics (Aerophysical Studies): Collection of Scientific Works [in Russian], Institute of Theoretical and Applied Mechanics of the Siberian Branch of the USSR Academy of Sciences, Novosibirsk (1974), No. 4, pp. 1–38.

    Google Scholar 

  18. S. V. Dresvin (ed.), Low-Temperature Plasma Physics and Technology [in Russian], Atomizdat, Moscow (1972).

    Google Scholar 

  19. G. M. Bukat, V. A. Gubkevich, E. A. Ershov-Pavlov, et al., “Study of the spectral optical properties of an air plasma using an automated measuring-computational system,” Zh. Prikl. Spektrosk.,22, No. 4, 611–617 (1975).

    Google Scholar 

  20. E. A. Ershov-Pavlov and N. I. Chubrik, “Including the radiation in the wings of spectral lines in the photoelectric method of recording,” in: Theoretical Physics. Plasma Physics: Collections of the Scientific Works of the Institute of Physics of the Belorussian SSR Academy of Sciences [in Russian], Institute of Physics of the Belorussian SSR Academy of Sciences, Minsk (1975), pp. 83–84.

    Google Scholar 

  21. E. I. Asinovskii, V. L. Nizovskii, and V. I. Shabashov, “Experimental study of the transport properties of an air plasma and carbon dioxide gas in a stabilized electric arc,” in: Jet Generators and High-Current Arcs [in Russian], Nauka, Leningrad (1973), pp. 44–66.

    Google Scholar 

  22. V. P. Lukashov, B. A. Pozdnyakov, and N. M. Shcherbik, “Measurement of the radial temperature distributions in a plasmotron with MEV,” in: Abstracts of Reports at the 8th All- Union Conference on Low-Temperature Plasma Generators, Institute of Thermal Physics of the Siberian Branch of the USSR Academy of Sciences, Novosibirsk (1980), Pt. 3, pp. 25–28.

    Google Scholar 

  23. E. Schade, “Messung von Temperatur-Verteilunger im N2 Kaskadenbogen bis 26,000°K,” Z. Physik,233, No. 1, 53–64 (1970).

    Google Scholar 

  24. E. F. Andreev, D. A. Gran'kova, E. A. Ershov-Pavlov, et al., “Ionization nonequilibrium in axisymmetrical arc plasma filaments,” in: Problems in Low-Temperature Plasma Physics [in Russian], Nauka i Tekhnika, Minsk (1970), pp. 134–136.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 50, No. 3, pp. 362–367, March, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azharonok, V.V., Gubkevich, V.A., Zolotovskii, A.I. et al. Optospectroscopic studies of the cathodic jet of a laminar plasmatron. Journal of Engineering Physics 50, 257–261 (1986). https://doi.org/10.1007/BF00870115

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00870115

Keywords

Navigation