Skip to main content

Advertisement

Log in

Investigating the effect of alternating voltage frequency on plasma jet parameters

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

An experimental study was conducted to test the effect of changing the frequency of a 10 kV alternating voltage source on the properties of a plasma jet. Optical emission spectra of the plasma were recorded and analyzed. In plasma physics, the electron temperature and density are key parameters. These were determined using a Boltzmann plot and the Stark broadening of the argon line at 763.153 nm, respectively. As the frequency of the alternating voltage source was increased from 10 to 30 kHz (in increments of 5 kHz), the electron temperature increased from 0.995 to 1.357 eV and the electron density rose from 12.027 × 1017 to 12.838 × 1017 cm−3. A strong correlation between the plasma parameters and the frequency of the alternating voltage source was evident. Measurements were also taken on the length of the plasma torch, which was found to grow from 0.041 to 0.051 m as the frequency of the supply voltages was increased. Furthermore, the effect of plasma on the temperature of a silicon target was investigated for a range of frequencies of the supply voltage. It was observed that a slight increase in temperature occurred with increasing frequency, at a constant argon gas flow rate. The effect of plasma jetting on a silicon target was studied at a fixed voltage frequency and a variable gas flow rate. Only a small increase in target temperature was observed. This ensures that no damage or unwanted effects occur on the material being processed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H T Sasmaze, M Alazzawi and N K A Alsahib Molecules. 26 1665 (2021).

    Article  Google Scholar 

  2. J S Oh, O T Olabanji, C Hale, R Mariani, K Kontis and J W Bradley J. Phys. D: Appl. Phys. 44 155206 (2011).

    Article  ADS  Google Scholar 

  3. M Wojewodka, C White, T Ukai, A Russell and K Kontis Phys. Plasmas 26 063512 (2019).

    Article  ADS  Google Scholar 

  4. N Ullah, M I Khan, A Qamar, N U Rehman, E T Din, M Alkhedher and A Majid ACS Omega 8 12028 (2023).

    Article  Google Scholar 

  5. M Szulc, G Forster, J-L Marques-Lopez and J Schein Appl. Sci. 12 6580 (2022).

    Article  Google Scholar 

  6. P Viegas, E Slikboer, Z Bonaventura, O Guaitella, A Sobota and A Bourdon Plasma Sources Sci. Technol. 31 053001 (2022).

    Article  ADS  Google Scholar 

  7. A Ivankov, T Capela, V Rueda, E Bru, H Piquet, D Schitz, D Florez and R Diez Plasma 5 75 (2022).

    Article  Google Scholar 

  8. T P Radhika and S Kar Sci. Rep. 13 10665 (2023).

    Article  Google Scholar 

  9. R Erfani, H Zare-Behtash, C Hale and K Kontis Acta Astronautica 109 132 (2015).

    Article  ADS  Google Scholar 

  10. N K Sharma, S Misra, V Dixit, R P Lamba, Y Choyal and U N Pal Trans. Plasma Sci. 49 2799 (2021).

    Article  ADS  Google Scholar 

  11. T Ukai and K Kontis Energies 13 628 (2020).

    Article  Google Scholar 

  12. S Wilczek, J Schulze, R P Brinkmann, Z Donkó, J Trieschmann and T Mussenbrock J. Appl. Phys. 127 181101 (2020).

    Article  ADS  Google Scholar 

  13. M M Wojewodka, C White and K Kontis Sens. Actuators A 303 111831 (2020).

    Article  Google Scholar 

  14. J J Shi, X T Deng, R Hall, J D Punnett and M G Kong J. Appl. Phys. 94 6303 (2003).

    Article  ADS  Google Scholar 

  15. W Cheng, J Yu, L Jiang, Q Miao, L Zhang and B Zhao Front. Energy Res. 10 879534 (2022).

    Article  Google Scholar 

  16. L Hansen, B M Goldberg, D Feng, R B Miles, H Kersten and S Reuter Plasma Sources Sci. Technol. 30 045004 (2021).

    Article  ADS  Google Scholar 

  17. T Darny, J M Pouvesle, V Puech, C Douat, S Dozias and E Robert Plasma Sources Sci. Technol. 26 4 (2017).

    Google Scholar 

  18. Mahreen, G V Prakash, S Kar, D Sahu and A Ganguli Contrib. Plasma Phys. 62 7 (2022).

    Article  Google Scholar 

  19. R Erfani, H Zare-Behtash and K Kontis Exp. Thermal Fluid Sci. 42 258 (2012).

    Article  Google Scholar 

  20. M Wan, F Liu, Z Fang, B Zhang and H Wan Phys. Plasmas 24 093514 (2017).

    Article  ADS  Google Scholar 

  21. M Szulc, G Forster, J L M Lopez and J Schein Appl. Sci. 12 6580 (2022).

    Article  Google Scholar 

  22. R Erfani, T Erfani, S V Utyuzhnikov and K Kontis Aerosp. Sci. Technol. 26 120 (2013).

    Article  Google Scholar 

  23. H D Stryczewska and O Boiko Appl. Sci. 12 4405 (2022).

    Article  Google Scholar 

  24. R Erfani, H Z Behtash and K Kontis J. Phys. D: Appl. Phys. 45 225201 (2012).

    Article  ADS  Google Scholar 

  25. T Ukai, A Russell, H Z Behtash and K Kontis Phys. Fluids 30 116106 (2018).

    Article  ADS  Google Scholar 

  26. S Wu, X Liu, G Huang, C Liu, W Bian and C Zhang Plasma Sci. Technol. 21 074007 (2019).

    Article  ADS  Google Scholar 

  27. R Ruisi, H Zare-Behtash and K Kontis Acta Astronaut. 126 354–363 (2016).

    Article  ADS  Google Scholar 

  28. M Thiyagarajan, A Sarani and C Nicula J. Appli. Phys. 113 233302 (2013).

    Article  ADS  Google Scholar 

  29. H R Humud and S Hussein Iraqi J. Phys. 15 142 (2017).

    Article  Google Scholar 

  30. T A Hameed and S J Kadhem Iraqi J. Sci. 60 12 (2019).

    Google Scholar 

  31. I K Abbas and K A Aadim Iraqi J. Sci. 64 2271 (2023).

    Article  Google Scholar 

  32. A K Abd and Q A Abbas Iraqi J. Sci. 64 1691 (2023).

    Article  Google Scholar 

  33. L Lin, Z Hou, X Yao, Y Liu, J R Sirigiri, T Lee and M Keidar Phys. Plasmas 27 063501 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saba J. Kadhem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadhem, S.J. Investigating the effect of alternating voltage frequency on plasma jet parameters. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03155-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03155-x

Keywords

Navigation