Skip to main content
Log in

Numerical modeling of thunderstorm

  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Summary

A brief review of numerical models of thunderstorms is presented. The attempts of modeling these clouds have to deal with an extremely broad range of microphysical and dynamic processes. Basic concepts of thunderstorm modeling, 1-D, 2-D and 3-D models are considered. Particular attention is given to the basic equations and to the capability of these models to predict characteristics of the tunderstorms. A brief treatment is also given of hail growth in thunderstorm models.

Zusammenfassung

Im folgenden wird eine knappe Übersicht numerischer Gewittermodelle präsentiert. Bei der Modellierung von Gewitterwolken muß ein ausgesprochen weiter Bereich von mikrophysikalischen und dynamischen Prozessen beachtet werden. Grundkonzepte der Gewittermodellierung, 1-D-, 2-D- und 3-D-Modelle werden hierzu herangezogen. Besondere Aufmerksamkeit gilt dabei den Ausgangsgleichungen sowie den potentiellen Möglichkeiten dieser Modelle, Charakteristika der Gewitter vorherzusagen. Weiters wird auch das Hagelwachstum in Gewittermodellen kurz behandelt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackermann, B., Sun, R. Y., 1985: Prediction by two onedimensional cloud models: A comparison.J. Climate Appl. Meteor. 24, 617–628.

    Google Scholar 

  • Anthes, R. A., Orville, H. D., Raymond, D. J., 1985: Mathematical modeling of convection. In:Thunderstorm Morphology and Dynamics (Ed. E. Kessler), University of Oklahoma press.: Norman, 313–356.

    Google Scholar 

  • Anthes, R. A., 1977: A cumulus parameterization scheme utilizing a one-dimensional cloud model.Mon. Wea. Rev. 105, 270–286.

    Google Scholar 

  • Browning, K. A., 1985: Morphology and classification of middle-latitude thunderstorms. In:Thunderstorm Morphology and Dynamics (Ed. E. Kessler), University of Oklahoma press.: Norman, 133–147.

    Google Scholar 

  • Browning, K. A., 1977: The structure and mechanisms of hailstorms.Meteor. Monogr. 16, 1–43.

    Google Scholar 

  • Browning, K. A., Ludlam, F. H., 1962: Airflow in convective storms.Quart. J. Roy. Meteor. Soc. 88, 117–135.

    Google Scholar 

  • Browning, K. A., Foote, G. B., 1976: Airflow and hail growth in supercell storms, and some implications for hail suppression.Quart J. Roy. Meteor. Soc. 89, 75–84.

    Google Scholar 

  • Chen, C. H., Orville, H. D., 1980: Effects of mesoscale convergence on cloud convection.J. Appl. Met. 19, 256–274.

    Google Scholar 

  • Chiu, C. S., 1978: Numerical study of atmospheric electricity in an axisymetric time-dependent warm cloud model.J. Geophys. Res. 83, 5025–5049.

    Google Scholar 

  • Clark, T. L., 1982: Hail-storm of a central Hait plains. In:Cloud Modeling in Three Spatial Dimensions. Boulder Colorado University press, 225–247.

  • Cotton, W. R., 1975: Theoretical cumulus dynamics.Rev. Geophys. Space Phys. 13, 419–448.

    Google Scholar 

  • Cotton, W. R., George, R. L., Knupp, K. R., 1982: An intense, quasi-steady thunderstorm over mountainous terrain. Part I: Evolution of the storm-initiating mesoscale circulation.J. Atmos. Sci. 39, 328–342.

    Google Scholar 

  • Cotton, W. R., Tripoli, G. J., 1978: Cumulus convection in the shear flow.J. Atmos. Sci. 35, 1503–1521.

    Google Scholar 

  • Ćurić, M., Janc, D., 1987: On the influence of entrainment and forced lifting on some products of 1-D model of Cb cloud.Atmos. Res. 21, 151–169.

    Google Scholar 

  • Ćurić, M., Janc, D., 1988: A forced 1-D convective cloud model.Meteorol. Atmos. Phys. 39, 51–62.

    Google Scholar 

  • Danielsen, E. F., 1975: A review of hail growth by stochastic collection in a Cb models.Pure Appl. Geophys. 113, 1019–1034.

    Google Scholar 

  • Danielsen, E. F., Bleck, R., Morris, D. A., 1972: Hail growth by stochastic collection in a cumulus model.J. Atmos. Sci. 29, 135–155.

    Google Scholar 

  • Dennis, A. S., Musil, D. J., 1973: Calculations of hailstones growth and trajectories in a simple cloud model.J. Atmos. Sci. 30, 278–288.

    Google Scholar 

  • Farley, R. D., 1987: Numerical modeling of hailstorms and hailstone growth. Part II: The role of low density riming growth in hail production,J. Climate Appl. Meteor. 26, 234–254.

    Google Scholar 

  • Fritsch, J. M., Chappel, C. F., 1981: Preliminary numerical tests of the modification of mesoscale convective systems.J. Appl. Meteor. 20, 910–921.

    Google Scholar 

  • Foote, G. B., 1984: A study of hail growth utilizing observed storm conditions,J. Climate Appl. Meteor. 23, 84–101.

    Google Scholar 

  • Hirsch, J. H., 1971: Computer modeling of cumulus cloud during project cloud catheter catcher. Rep. 71-7. Inst. Atmos. Sci. South Dakota, 61 pp.

    Google Scholar 

  • Klemp, J. B., Wilhelmson, R. B., 1978: The simulation of three dimensional convective storm dynamics.J. Atmos. Sci. 35, 1070–1096.

    Google Scholar 

  • Klemp, J. B., Rotunno, R., 1983: A study of the tornadic region within a supercell thunderstorm.J. Atmos. Sci. 40, 359–377.

    Google Scholar 

  • Lin, J. Y., Farley, R. D., Orville, H. D., 1983: Bulk parameterization of the snow field in a cloud model.J. Climate Appl. Meteor. 22, 1065–1092.

    Google Scholar 

  • Lipps, F. B., 1977: A study of turbulence parameterization in a cloud model.J. Atmos. Sci. 34, 1751–1772.

    Google Scholar 

  • Miller, M. J., 1978: The Hampstead storm: A numerical simulation of a quasi-stationary cumulonimbus system.Quart. J. Roy. Meteor. Soc. 104, 413–427.

    Google Scholar 

  • Murray, F. W., 1970: Numerical models of a tropical cumulus cloud with bilateral and axial symmetry.Mon. Wea. Rev. 98, 14–28.

    Google Scholar 

  • Musil, D. J., 1970: Computer modeling of hailstone growth in feeder clouds:J. Atmos. Sci. 27, 474–482.

    Google Scholar 

  • Ogura, Y., 1963: The evolution of a moist convective element in a shallow, conditionally unstable atmosphere a numerical calculation.J. Atmos. Sci. 20, 407–424.

    Google Scholar 

  • Orville, H. D., 1977: A review of hailstone-hailstorm numerical simulations.Meteor. Monogr. 16, 49–61.

    Google Scholar 

  • Orville, H. D., Kopp, F. J., Myers, C. G., 1975: The dynamics and thermodynamics of precipitation loading.Pure Appl. Geophys 113, 983–1004.

    Google Scholar 

  • Orville, H. D., Kopp, F. J., 1977: Numerical simulation of the history of a hailstorm.J. Atmos. Sci. 34, 1596–1618.

    Google Scholar 

  • Paluch, I. R., 1978: Size sorting of hail in a three dimensional updraft and implications on hail suppression.J. Appl. Meteor. 17, 763–777.

    Google Scholar 

  • Pierce, E. T., 1985: Storm electricity and lighting. In:Thunderstorm Morphology and Dynamics (Ed. E. Kessler), University of Oklahoma press, 277–288.

  • Redelsperger, J. L., Sommeria, G., 1986: Three-dimensional simulation of a convective storm: Sensitivity studies on subgrid parameterization and spatial resolution.J. Atmos. Sci. 43, 2619–2635.

    Google Scholar 

  • Rotunno, R., Klemp, J. B., 1985: On the rotation and propagation of simulated supercell thunderstorm.J. Atmos. Sci. 42, 271–292.

    Google Scholar 

  • Schlesinger, R. E., 1975: A three-dimensional numerical model of an isolated deep convective cloud.J. Atmos. Sci. 32, 934–957.

    Google Scholar 

  • Soong, S. T., Ogura, Y., 1973: A comparation between axisymetric and slab-symmetric cumulus cloud models.J. Atmos. Sci. 30, 879–893.

    Google Scholar 

  • Srivastava, R. C., 1967: A study of the effect of precipitation on cumulus dynamics.J. Atmos. Sci. 24, 36–45.

    Google Scholar 

  • Steiner, J. T., 1973: A three-dimensional model of cumulus cloud development.J. Atmos. Sci. 30, 414–435.

    Google Scholar 

  • Thorpe, A. J., Miller, M. J., 1978: Numerical simulations showing the role of the downdraft in cumulonimbus motion and splitting.Quart. J. Roy. Meteor. Soc. 104, 873–893.

    Google Scholar 

  • Toutenhoofd, V., Klemp, J. B., 1983: An isolated Cumulonimbus observed in northeastern Colorado: Comparison of field observation with results of a three-dimensional simulation.Mon. Wea. Rev. 111, 468–478.

    Google Scholar 

  • Tripoli, G. J., Cotton, W. R., 1986: An intense, quasi-steady thunderstorm over mountainous terrain. Part IV: Threedimensional numerical simulation.J. Atmos. Sci. 43, 894–912.

    Google Scholar 

  • Wang, Y. C., 1983: A quasi one dimensional time dependent and non precipitating cumulus cloud model.J. Atmos. Sci. 40, 651–664.

    Google Scholar 

  • Weinstein, A. J., 1970: A numerical model of cumulus dynamics and microphysics.J. Atmos. Sci. 27, 246–255.

    Google Scholar 

  • Weisman, M., Klemp, J. B., 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy.Mon. Wea. Rev. 110, 504–520.

    Google Scholar 

  • Weisman, M., Klemp, J. B., 1984: The structure and classification of numerically simulated convective storms in directionally varing wind shears.Won. Wea. Rev. 112, 2479–2498.

    Google Scholar 

  • Wilhelmson, R. B., 1974: The life cyclo of a thunderstorm in three dimensions.J. Atmos. Sci. 31, 1629–1651.

    Google Scholar 

  • Wilhelmson, R. B., Klemp, J. B., 1978.

  • Wisner, C. H., Orville, H. D., Myers, C., 1972: A numerical model of hailbearing cloud.J. Atmos. Sci. 29, 1160–1186.

    Google Scholar 

  • Wilhelmson, R. B., Chen, C. S., 1982: A simulation of the development successive cells along a cloud outflow boundary.J. Atmos. Sci. 39, 1466–1483.

    Google Scholar 

  • Xu, J. L., 1983: Hail growth in a three-dimensional cloud model.J. Atmos. Sci. 40, 185–203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 8 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ćurić, M. Numerical modeling of thunderstorm. Theor Appl Climatol 40, 227–235 (1989). https://doi.org/10.1007/BF00865973

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00865973

Keywords

Navigation