Skip to main content
Log in

Theoretical study of isomerism in protonated forms of N2O, NPO, and P2O

  • Physical Chemistry
  • Structure Of Molecules
  • Published:
Bulletin of the Russian Academy of Sciences, Division of chemical science Aims and scope

Abstract

The geometric parameters of the isomers HN2O+, HPNO+, and HP2O+ were calculated by the nonempirical SCF/3-21G* method and their relative energies were determined with consideration of the electronic correlation in the MP3/DEHD + PS approximation. According to the calculations, protonation of N2O, PNO, and P2O molecules should preferably take place at the oxygen atom. Isomers with a quasilinear NNO and PNO backbone are most advantageous in HN2O+ and HPNO+, and cyclic isomers are ∼60 and ∼30 kcal/mole less stable, respectively. On the contrary, the cyclic form is more stable for HPO +2 (by ∼10 kcal/mole). The bond at the attacked atom usually weakens (breaks) and the neighboring (opposite) bonds are strengthened in protonation. Protonation of P2O stabilizes the cyclic isomer by 15 kcal/mole more strongly than the "open" isomer, resulting in inversion of their position on the energy scale. In the case of N2O and PNO, the relative position of the cyclic and basic isomers virtually does not change, but the linear NPO isomer is destabliized. The stability of the cyclic isomers in comparison to the "open" isomers increases on substitution of N atoms by P atoms in both molecules of N2O, PNO, and P2O and in their ions HN2O+, HPNO+, and HP2O+. This tendency probably holds in subsequent transition to As and Sb atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. G. M. Chaban, N. M. Klimenko, and O. P. Charkin, Izv. Akad. Nauk, Ser. Khim., No. 4, 794 (1990).

  2. T. Busch and W. W. Schoeller, Z. Phys. D.,13, No. 4, 289 (1989).

    Google Scholar 

  3. L. L. Lohr, J. Phys. Chem.,94, No. 5, 1807 (1990).

    Google Scholar 

  4. S. A. Jarrett-Sprague, I. H. Hillier, and I. R. Gould, Chem. Phys.,140, No. 1, 27 (1990).

    Google Scholar 

  5. R. Ahlrichs, S. Schunck, and H. Schnockel, Angew. Chem.,100, No. 3, 418 (1988).

    Google Scholar 

  6. G. M. Chaban, N. M. Klimenko, and O. P. Charkin, Izv. Akad. Nauk, Ser. Khim., No. 7, 1590 (1990).

  7. T. P. Hamilton and H. F. Schaefer, III, Chem. Phys. Lett.,166, No. 3, 303 (1990).

    Google Scholar 

  8. J. K. Burdett and C. J. Marsden, New. J. Chem.,12, No. 10, 797 (1988).

    Google Scholar 

  9. J. E. Rice, T. J. Lee, and H. F. Schaefer, III, Chem. Phys. Lett.,130, No. 4, 333 (1986).

    Google Scholar 

  10. M. Vincent and I. H. Hillier, Chem. Phys. Lett.,130, No. 4, 330 (1986).

    Google Scholar 

  11. K. Yamashita and K. Morokuma, Chem. Phys. Lett.,131, No. 3, 237 (1986).

    Google Scholar 

  12. J. E. Del Bene, E. A. Stahlberg, and I. Shavitt, Int. J. Quant. Chem. Quant. Chem. Symp.,24, 455 (1990).

    Google Scholar 

  13. R. D. Davy and H. F. Schaefer, III, J. Chem. Phys.,92, No. 9, 5417 (1990).

    Google Scholar 

  14. G. M. Chaban and N. M. Klimenko, Proceedings of the 17th All-Union Chugaev Conference on the Chemistry of Complexes [in Russian], Part 3, Minsk (May 29–31, 1990), p. 494.

  15. T. Amano, Chem. Phys. Lett.,127, No. 2, 101 (1986).

    Google Scholar 

  16. E. E. Ferguson, Chem. Phys. Lett.,156, No. 4, 319 (1989).

    Google Scholar 

  17. V. V. Yakobson, T. S. Zyubina, and O. P. Charkin, Zh. Neorg. Khim.,33, No. 12, 2997 (1988).

    Google Scholar 

  18. M. W. Schmidt, P. N. Truong, and M. S. Gordon, J. Am. Chem. Soc.,109, No. 17, 5217 (1987).

    Google Scholar 

  19. O. P. Charkin, Stability and Structure of Gaseous Inorganic Molecules, Radicals, and Ions [in Russian], Nauka, Moscow (1980), p. 166.

    Google Scholar 

  20. O. P. Charkin and T. S. Zyubina, Koordinats. Khim.,12, No. 8, 1011 (1986).

    Google Scholar 

  21. M. H. Alexander, H. J. Werner, and P. J. Dagdigian, J. Chem. Phys.,89, No. 3, 1388 (1988).

    Google Scholar 

  22. H.-G. Mack and H. Oberhammer, Chem. Phys. Lett.,157, No. 5, 436 (1989).

    Google Scholar 

  23. D. Poppinger and L. Random, J. Am. Chem. Soc.,100, No. 12, 3674 (1978).

    Google Scholar 

  24. H. Leung, R. J. Suffolk, and J. D. Watts, Chem. Phys.,109, Nos. 2 and 3, 289 (1986).

    Google Scholar 

  25. M. Scarlett and P. R. Taylor, Chem. Phys.,101, No. 1, 17 (1986).

    Google Scholar 

  26. U. Seeger, R. Seeger, J. A. Pople, and P. R. Schleyer, Chem. Phys. Lett.,55, No. 3, 399 (1978).

    Google Scholar 

  27. G. M. Chaban, N. M. Klimenko, and O. P. Charkin, in: Structure and Properties of Molecules [in Russian], K. S. Krasnov (ed.), Ivanov. KhTI, Ivanovo (1988), p. 20.

    Google Scholar 

  28. S. A. Jarrett-Sprague and I. H. Hillier, Chem. Phys.,148, No. 2, 325 (1990).

    Google Scholar 

Download references

Authors

Additional information

Institute of New Chemical Problems, Russian Academy of Sciences, 142432 Chernogolovka. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 1, pp. 126–134, January, 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaban, G.M., Klimenko, N.M. & Charkin, O.P. Theoretical study of isomerism in protonated forms of N2O, NPO, and P2O. Russ Chem Bull 41, 99–106 (1992). https://doi.org/10.1007/BF00863921

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00863921

Keywords

Navigation