Skip to main content
Log in

The structure of the SF6 molecule and the SF 6 anion excited states

  • Physical Chemistry
  • Structure And Physicochemical Properties Of Molecules
  • Published:
Bulletin of the Russian Academy of Sciences, Division of chemical science Aims and scope

Abstract

The electronic and geometric structures of the ground state and a number of excited states of the SF6 molecule and the SF 6 anion have been calculated by the discrete-variation method of the local density-functionals. The anion was found to possess a number of states stable toward the outer electron detachment, and at least one excited state stable toward dissociation. The adiabatic electron affinity (EA) was determined as 3.46 eV at the highest level of theory. This result is correlated to the high EAs of the isovalent compound SeF6 and TeF6; however, it does not agree with the presently accepted experimental estimate of 1.0 ± 0.2 eV for the SF6EA value. The basic anion configuration is octahedral with a S-F bond length of 1.717 Å. The calculated limit for the highest dissociation channel of the ground state SF 6 → SF 5 + F is ≈ 1.5 eV lower than the minimum of the total energy of the neutral molecule; this is in good agreement with experimental estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. L. G. Christophorou (ed.),Electron-Molecule Interactions and Their Applications, Vols. 1, 2, Academic Press, New York (1984).

    Google Scholar 

  2. R. N. Compton, L. G. Christophorou, G. S. Hurst, and P. W. Reinhardt,J. Chem. Phys. 45, 4634 (1966).

    Google Scholar 

  3. R. K. Asundi and J. D. Craggs,Proc. Phys. Soc. 83, 611 (1964).

    Google Scholar 

  4. P. W. Harland and J. C. Thynne,J. Phys. Chem. 75, 3517 (1971).

    Google Scholar 

  5. A. V. Phelps and R. S. Van Brunt,J. Appl. Phys. 64, 4269 (1988).

    Google Scholar 

  6. A. Chutijan and S. H. Alajajin,Phys. Rev. A 31, 2885 (1985).

    Google Scholar 

  7. S. R. Hunter, J. G. Carter, and L. G. Christophorou,J. Chem. Phys. 90, 4879 (1989).

    Google Scholar 

  8. D. Spence and G. J. Schulz,J. Chem. Phys. 58, 1800 (1973).

    Google Scholar 

  9. C. L. Chen and P. J. Chantry,J. Chem. Phys. 71, 3897 (1979).

    Google Scholar 

  10. R. J. Van Brunt,J. Appl. Phys. 59, 2314 (1986).

    Google Scholar 

  11. J. K. Olthoff, R. J. Van Brunt, Y. Wang, R. L. Champion, and L. D. Doverspike,J. Chem. Phys. 91, 2261 (1989).

    Google Scholar 

  12. G. E. Streit,J. Chem. Phys. 77, 826 (1982).

    Google Scholar 

  13. E. P. Grimsrud, S. Chouwdhury, and P. Kebarle,J. Chem. Phys. 83, 1059 (1985).

    Google Scholar 

  14. P. J. Orient and A. Chutjian,Phys. Rev. A34, 1841 (1986).

    Google Scholar 

  15. E. C. M. Chen, L.-R. Shuie, E. D. D'Sa, C. F. Batten, and W. E. Wentworth,J. Chem. Phys. 88, 4711 (1988).

    Google Scholar 

  16. A. A. Christodoulides, D. L. McCorkle, and L. G. Christophorou,Electron Affinities of Atoms, Molecules, and Radicals, Vol. 2, Chap. 6 (1984).

  17. P. J. Hay,J. Chem. Phys. 76, 502 (1982).

    Google Scholar 

  18. R. Tang and J. Callaway,J. Chem. Phys. 84, 6854 (1986).

    Google Scholar 

  19. M. Klobukowski, Z. Barandiaran, L. Seijo, and S. Huzinaga,J. Chem. Phys. 86, 1637 (1987).

    Google Scholar 

  20. E. Miyoshi, Y. Sakai, and S. Miyoshi,J. Chem. Phys. 88, 1470 (1988).

    Google Scholar 

  21. W. E. Wentworth and W. Ristau,J. Phys. Chem. 73, 2126 (1969).

    Google Scholar 

  22. J. A. D. Stockdale, R. N. Compton, and H. C. Schweinler,J. Chem. Phys. 53, 1502 (1969).

    Google Scholar 

  23. B. R. Miller and M. Fink,J. Chem. Phys. 75, 5326 (1981).

    Google Scholar 

  24. S. Lundquist and N. H. March (eds.),Theory of the Inhomogeneous Electron Gas, Plenum Press, New York (1983).

    Google Scholar 

  25. R. Fletcher,Practical Methods for Optimization Wiley, New York (1980).

    Google Scholar 

  26. L. Versluis and T. Ziegler,J. Chem. Phys. 88, 322 (1988).

    Google Scholar 

  27. E. J. Baerends, D. E. Ellis, and P. Ros,Chem. Phys. 2, 41 (1973).

    Google Scholar 

  28. J. C. Slater,Quantum Theory of Molecules and Solids, Vol. 4, McGraw-Hill, New York (1974).

    Google Scholar 

  29. C. A. J. Fletcher,Computational Galerkin Methods Springer, New York (1984).

    Google Scholar 

  30. J. G. Snijders, E. J. Baerends and P. Vernojis,At. Nucl. Data Tables 26, 486 (1982).

    Google Scholar 

  31. S. H. Vosko, L. Wilk, and M. Nusair,Can. J. Phys. 58, 1200 (1980).

    Google Scholar 

  32. A. D. Becke,Phys. Rev. A38, 3098 (1988).

    Google Scholar 

  33. A. D. Becke,J. Chem. Phys. 88, 1053 (1988).

    Google Scholar 

  34. V. Tschinke and T. Ziegler,Density Matrices and Density Functionals, R. Erdahl and V. H. Smith (eds.), Reidel, New York (1987), p. 467.

    Google Scholar 

  35. G. L. Gutsev and A. I. Bondyrev,J. Electron. Spectrosc. Relat. Phenom. 50, 103 (1990).

    Google Scholar 

  36. M. Klobukowski, S. Huzinaga, L. Seijo, and Z. Barandiaran,Theor. Chim. Acta 71, 237 (1987).

    Google Scholar 

  37. D. Hildenbrand,J. Phys. Chem. 77, 897 (1973).

    Google Scholar 

  38. D. F. McMillen and D. M. Golden,Ann. Rev. Phys. Chem. 33, 493 (1982).

    Google Scholar 

  39. T. Kiang, R. C. Estler, and R. N. Zare,J. Chem. Phys. 70, 5925 (1979).

    Google Scholar 

  40. L. M. Babcock and G. E. Streit,J. Chem. Phys. 75, 3864 (1981).

    Google Scholar 

  41. G. Herzberg,Electronic Spectra and Electronic Structure of Polyatomic Molecules Van Nostrand, Princeton (1966), p. 644.

    Google Scholar 

  42. P. Harland and J. C. J. Thynne,J. Phys. Chem. 73, 4031 (1969).

    Google Scholar 

  43. P. S. Drzaic and J. I. Brauman,J. Am. Chem. Soc. 104, 13 (1982).

    Google Scholar 

  44. S. H. Vosko and J. B. Lagowski,Density Matrices and Density Functionals, R. Erdahl and V. H. Smith (eds.), Reidel, New York (1987), p. 391.

    Google Scholar 

  45. B. I. Dunla,Ab Initio Methods in Quantum Chemistry, Vol. 2, Wiley, New York (1987), p. 287.

    Google Scholar 

  46. Y. Wang, R. L. Champion, L. D. Doverspike, J. K. Olthoff, and R. J. Van Brunt,J. Chem. Phys. 91, 2254 (1989).

    Google Scholar 

  47. C. B. Leffert, S. Y. Tang, E. W. Rothe, and T. C. Cheng,J. Chem. Phys. 61, 4929 (1974).

    Google Scholar 

  48. M. M. Hubers and J. Los,J. Chem. Phys. 63, 235 (1975).

    Google Scholar 

  49. R. N. Compton, P. W. Reinhardt, and C. D. Cooper,J. Chem. Phys. 68, 2023 (1978).

    Google Scholar 

  50. C. Lifshitz,J. Phys. Chem. 87, 3474 (1983).

    Google Scholar 

  51. M. Fenzlaff, R. Gerhard, and E. Illenberger,J. Chem. Phys. 88, 149 (1988).

    Google Scholar 

  52. L. E. Kline, D. K. Davies, C. L. Chen, and P. J. Chantry,J. Appl. Phys. 50, 6789 (1979).

    Google Scholar 

  53. J. E. Delmore and A. D. Appelhans,J. Chem. Phys. 84, 6288 (1986).

    Google Scholar 

  54. T. Ziegler and G. L. Gutsev,J. Comput. Chem. (1991) (in press).

  55. G. L. Gutsev and A. P. Klyagina,Chem. Phys. 75, 243 (1983).

    Google Scholar 

  56. G. L. Gutsev and A. A. Levin,Chem. Phys. 51, 459 (1980).

    Google Scholar 

  57. A. K. Rappé,J. Chem. Phys. 85, 6576 (1986).

    Google Scholar 

  58. G. L. Gutsev and A. I. Boldyrev,Adv. Chem. Phys. 61, 169 (1985).

    Google Scholar 

  59. G. L. Gutsev and A. I. Boldyrev,Usp. Khim. 56, 889 (1987).

    Google Scholar 

  60. G. L. Gutsev and A. I. Boldyrev,J. Phys. Chem. 94, 2256 (1990).

    Google Scholar 

Download references

Authors

Additional information

Institute for Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 3, pp. 641–649, March, 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutsev, G.L. The structure of the SF6 molecule and the SF 6 anion excited states. Russ Chem Bull 41, 504–510 (1992). https://doi.org/10.1007/BF00863073

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00863073

Keywords

Navigation