Skip to main content
Log in

Potential Energy Surface of SF6

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

For the first time, a 15-dimensional analytical form was obtained and the potential energy of the SF6 molecule in the ground electronic state was found. An optimal grid of geometries was constructed, which, taking into account the full symmetry of the molecule, unambiguously determines the potential energy surface of the sixth order. Using the MP2 method with the cc-pVTZ base set, the potential energy surface of the fourth order was calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. Jesse, A. J. Pedraza, and J. D. Fowlkes, “Etching-enhanced ablation and the formation of a microstructure in silicon by laser irradiation in an SF6 atmosphere,” J. Mater. Res., No. 17, 1002–1013 (2002).

    Article  ADS  Google Scholar 

  2. W. M. Johnstone and W. R. Newell, “Absolute elastic differential cross sections for electron scattering from SF6,” J. Phys. B, No. 24, 473–487 (1991).

    Article  ADS  Google Scholar 

  3. N. H. Malik and A. H. Qureshi, “A review of electrical breakdown in mixtures of SF6 and other gases,” IEEE Trans. Electr. Insul. 14 (1), 11–13 (1979).

    Google Scholar 

  4. O. Hodnebrog, M. Etminan, J. S. Fuglestvedt, G. Marston, G. Myhre, C. J. Nielsen, K. P. Shine, and T. J. Wallington, “Global warming potentials and radiative efficiencies of halocarbons and related compounds: A comprehensive review,” Rev. Geophys. 51 (2), 300–378 (2013).

    Article  ADS  Google Scholar 

  5. A. R. Ravishankara, S. Solomon, A. A. Turnipseed, and R. F. Warren, “Atmospheric lifetimes of long-lived halogenated species,” Science 259 (5092), 194–199 (1993).

    Article  ADS  Google Scholar 

  6. www.esrl.noaa.gov/?gmd/?hats/?data.html. Cited March 17, 2019.

  7. M. Rey, I. S. Chizhmakova, A. V. Nikitin, and V. G. Tyuterev, “Understanding global infrared opacity and hot bands of greenhouse molecules with low vibrational modes from first-principles calculations: The case of CF4,” Phys. Chem. Chem. Phys. 20, 21008–21033 (2018).

    Article  Google Scholar 

  8. V. Boudon and D. Bermejo, “First high-resolution Raman spectrum and analysis of the ν5,” J. Mol. Spectrosc. 213, 139–144 (2002).

    Article  ADS  Google Scholar 

  9. V. Boudon, G. Pierre, and H. Burger, “High-resolution spectroscopy and analysis of the n 4 bending region of SF6 near 615 cm–1,” J. Mol. Spectrosc. 205, 304–311 (2001).

    Article  ADS  Google Scholar 

  10. G. Nagarajan and D. C. Brinkley, “Statistical thermodynamics enthalpy, free energy, entropy, and heat capacity of some hexafluorides of octahedral symmetry,” Z. Naturforsch., A: Phys. Sci., 1658–1665 (1971).

  11. V. P. Spiridonov, Y. I. Tarasov, B. K. Novosadov, O. Y. Nikitin, and I. V. Maslov, “A practical method for diffraction analysis of equilibrium geometries molecules without refined force fields,” J. Mol. Struct., 463–470 (1997).

    Article  ADS  Google Scholar 

  12. H. -J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schutz, P. Celani, W. Gyorffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, S. J. Bennie, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Koppl, S. J. R. Lee, Y. Liu, A. W. Lloyd, Q. Ma, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, T. F. III. Miller, and M. E. Mura, MOLPRO, version 2009.1, a package of ab initio programs. http://www.molpro.net. Cited March, 17, 2019.

  13. R. J. Bartlett, “Many-body perturbation theory and coupled cluster theory for electron correlation in molecules,” Ann. Rev. Phys. Chem. 32, 359–401 (1981).

    Article  ADS  Google Scholar 

  14. M. Head-Gordon, J. A. Pople, and M. J. Frisch, “MP2 energy evaluation by direct methods,” Chem. Phys. Lett. 153 (6), 503–506 (1988).

    Article  ADS  Google Scholar 

  15. W. Eisfeld, “Highly accurate determination of the electron affinity of SF6 and analysis of structure and photodetachment spectrum of SF6,” J. Chem. Phys., No. 134, 054303 (2011).

  16. B. R. Miller and M. Fink, “Mean amplitudes of vibration of SF6 and intramolecular multiple scattering,” J. Chem. Phys., No. 75, 5326–5328 (1981).

    Article  ADS  Google Scholar 

  17. A. V. Nikitin, M. Rey, and V. G. Tyuterev, “Rotational and vibrational energy levels of methane calculated from a new potential energy surface,” Chem. Phys. Lett. 501, 179–186 (2011).

    Article  ADS  Google Scholar 

  18. A. V. Nikitin, “Calculation of vibrational energy levels of symmetric molecules from potential energy surface,” Opt. Atmos. Okeana 28 (5), 379–390 (2015).

    Google Scholar 

  19. B. I. Zhilinskii, V. I. Perevalov, and V. G. Tyuterev, Method of Irreducible Tensorial Operators in the Theory of Molecular Spectra (Nauka, Novosibirsk, 1987), p. 1–13 [in Russian].

    Google Scholar 

  20. L. Halonen and M. S. Child, “A local mode model for tetrahedral molecules,” Mol. Phys. 46, 239–255 (1982).

    Article  ADS  Google Scholar 

  21. P. N. Schatz and D. F. Hornig, “Bond moments and derivatives in CF4, SiF4, and SF6 from infrared intensities,” J. Chem. Phys. 21 (9), 1516–1530 (1953).

    Article  ADS  Google Scholar 

  22. M. Fernandez-Gomez and J. J. Lopez-Gonzalez, “Calculation of internal valence force constants for XY6(Oh) octahedral molecules,” J. Mol. Struct. 220, 287–300 (1990).

    Article  ADS  Google Scholar 

  23. T. C. W. F. Pistorius, “Potential field and force constants of octahedral molecules,” J. Chem. Phys. 29 (6), 1328–1332 (1958).

    Article  ADS  Google Scholar 

  24. V. G. Tyuterev, S. A. Tashkun, M. Rey, R. V. Kochanov, A. V. Nikitin, and T. Delahaye, “Accurate spectroscopic models for methane polyads derived from a potential energy surface using high-order contact transformations,” J. Phys. Chem. 117, 13779–13805 (2013).

    Article  Google Scholar 

  25. M. Rey, A. V. Nikitin, Y. Babikov, and V. G. Tyuterev, “TheoReTS—An information system for theoretical spectra based on variational predictions from molecular potential energy and dipole moment surfaces,” J. Mol. Spectrosc. 327, 138–158 (2016).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (grant no. 17-17-01170).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. S. Chizhmakova or A. V. Nikitin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chizhmakova, I.S., Nikitin, A.V. Potential Energy Surface of SF6. Atmos Ocean Opt 32, 613–618 (2019). https://doi.org/10.1134/S1024856019060046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856019060046

Keywords:

Navigation