Skip to main content
Log in

Distance-dependent fluorescence quenching ofN-acetyl-l-tryptophanamide by acrylamide

  • Quenching of Fluorescence
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We examined the time-dependent intensity decays ofN-acetyl-l-tryptophanamide (NATA) when collisionally quenched by acrylamide in propylene glycol over a range of temperatures. The intensity decays of NATA became increasingly heterogeneous in the presence of acrylamide. The NATA intensity decays were not consistent with the Collins-Kimball radiation boundary condition (RBC) model for quenching. The steady-state Stern-Volmer plots show significant upward curvature, and quenching of NATA by acrylamide was observed even in vitrified propylene glycol, where translational diffusion cannot occur during the lifetime of the excited state. These frequencydomain and steady-state data indicate a through-space quenching interaction between NATA and acrylamide, and the results are consistent with a rate constant for quenching that depends exponentially on the fluorophore-quencher separation distance. The exponential distance-dependent rate of quenching also explains the upward curvature of the Stern-Volmer plot, and the steady-state data aid in determining the interaction distance between NATA and acrylamide. These results suggest that the distance-dependent quenching rates need to be considered in the interpretation of acrylamide quenching of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Eftink (1991) in J. R. Lakowicz (Ed.),Topics in Fluorescence Spectroscopy, Vol. 2: Principles, Plenum Press, New York, pp. 53–126.

    Google Scholar 

  2. M. R. Eftink and C. A. Ghiron (1981)Anal. Biochem. 114, 199–227.

    PubMed  Google Scholar 

  3. B. Somogyi and Z. Lakos (1993)Photochem. Photobiol. B Biol. 18, 3–16.

    Google Scholar 

  4. J. R. Lakowicz and G. Weber (1973)Biochemistry 12, 4171–4179.

    PubMed  Google Scholar 

  5. J. R. Lakowicz, I. Gryczynski, H. Szmacinski, H. Cherek, and N. Joshi (1991)Eur. Biophys. J. 19, 125–140.

    PubMed  Google Scholar 

  6. J. R. Lakowicz (1982) in C. Hoet al. (Eds.),Hemoglobin and Oxygen Binding, Vol. 1, pp. 443–448.

  7. C. D. Stubbs and B. W. Williams (1992) in J. R. Lakowicz (Ed.),Topics in Fluorescence Spectroscopy, Vol. 3. Biochemical Applications, Plenum Press, New York, pp. 231–271.

    Google Scholar 

  8. T. L. Nemzek and W. R. Ware (1975)J. Chem. Phys. 62, 477–489.

    Google Scholar 

  9. J. C. Andre, M. Niclause, and W. R. Ware (1978)Chem. Phys. 28, 371–377.

    Google Scholar 

  10. J. R. Lakowicz, N. B. Joshi, M. L. Johnson, H. Szmacinski, and I. Gryczynski (1987)J. Biol. Chem. 262, 10907–10910.

    PubMed  Google Scholar 

  11. J. R. Lakowicz, M. L. Johnson, I. Gryczynski, N. Joshi, and G. Laczko (1987)J. Phys. Chem. 91, 3277–3285.

    Google Scholar 

  12. I. Gryczynski, H. Szmacinski, G. Laczko, W. Wiczk, M. L. Johnson, J. Kuśba, and J. R. Lakowicz (1991),J. Fluoresc. 1, 163–176.

    Google Scholar 

  13. J. R. Lakowicz and I. Gryczynski (1992)Arab. J. Sci. Eng. 17, 261–286.

    Google Scholar 

  14. A. Szabo (1989)J. Phys. Chem. 93, 6923–6939.

    Google Scholar 

  15. M. V. Smoluchowski (1917)Z. Phys. Chem. 92, 129–168.

    Google Scholar 

  16. F. C. Collins and G. E. Kimball (1949)J. Colloid Sci. 4, 425–437.

    Google Scholar 

  17. N. Joshi, M. L. Johnson, I. Gryczynki, and J. R. Lakowicz (1987)Chem. Phys. Lett. 135, 200–207.

    Google Scholar 

  18. J. R. Lakowicz, J. Kuśba, H. Szmacinski, M. L. Johson, and I. Gryczynski (1993)Chem. Phys. Lett. 206, 455–463.

    Google Scholar 

  19. J. R. Lakowicz, B. Zelent, J. Kuśba, and I. Gryczynski (1994) in preparation.

  20. N. J. Turro (Ed.) (1978)Modern Molecular Photochemistry, Benjamin Cummings, Menlo Park, CA, pp. 305–311.

    Google Scholar 

  21. J. R. Lakowicz, G. Laczko, and I. Gryczynski (1986)Rev. Sci. Instrum. 57, 2499–2506.

    Google Scholar 

  22. G. Laczko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak and J. R. Lakowicz (1990)Rev. Sci. Instrum. 61, 2331–2337.

    Google Scholar 

  23. M. R. Eftink and C. A. Ghiron (1987)Biochim. Biophs. Acta 916, 343–349.

    Google Scholar 

  24. C. A. Parker (1968)Photoluminescence of Solutions, Elsevier, New York, pp. 220–226.

    Google Scholar 

  25. J. R. Lakowicz, B. Zelent, J. Kuśba, I. Gryczynski, and M. L. Johnson (1994)Photochem. Photobiol. (submitted).

  26. E. P. Kirby and R. F. Steiner (1970)J. Phys. Chem. 74, 4480–4490.

    Google Scholar 

  27. R. F. Steiner and E. P. Kirby (1969)J. Phys. Chem. 73, 4130–4135.

    PubMed  Google Scholar 

  28. J. R. Lakowicz, B. Zelent, J. Kuśba, and M. L. Johnson (1994)J. Phys. Chem. (in preparation).

  29. J. M. Vanderkooi, S. W. Englander, S. Papp, W. W. Wright, and C. S. Owen (1990)Proc. Natl. Acad. Sci. U.S.A. 87, 5099–5103.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelent, B., Kuśba, J., Gryczynski, I. et al. Distance-dependent fluorescence quenching ofN-acetyl-l-tryptophanamide by acrylamide. J Fluoresc 3, 199–207 (1993). https://doi.org/10.1007/BF00862743

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00862743

Key Words

Navigation