Skip to main content
Log in

A Study of the Temperature Dependence of Tryptophan Fluorescence Lifetime in the Range of –170 to +20°С in Various Solvents

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The temperature dependences (–170...+20°C) of the fluorescence lifetime of tryptophan molecules in an aqueous solution, in solutions of glycerol (50 and 75% by volume), dimethyl sulfoxide (50 and 75% by volume) and in 1 M aqueous solution of trehalose were studied. In this temperature range, the fluorescence kinetics at room temperature in all samples were best approximated by three exponents with characteristic times of τ1 ~ 3 ns, τ2 ~ 4 ns, and τ3 ~ 15 ns. The temperature dependences of the fluorescence lifetime of the fastest and medium components in the temperature range from –60 to 10°C were found to be directed in opposite directions (in antiphase). To explain these temperature dependences, a new model of the nature of multicomponent fluorescence was proposed, which considered the transition of the tryptophan molecule from the excited state to the charge-transfer state, the reverse transition to the excited state, as well as the radiative and nonradiative transitions of the charge-transfer state to the ground state. The results we obtained can serve as a basis for the interpretation of the experimental dependences of the lifetime of tryptophan fluorescence on the temperature in proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. J. L. Dashnau, B. Zelent, and J. M. Vanderkooi, Biophys. Chem. 114, 71 (2005).

    Article  Google Scholar 

  2. D. E. Schlamadinger, J. E. Gable, and J. E. Kim, J. Phys. Chem. B 113, 14769 (2009).

    Article  Google Scholar 

  3. Y. Chen and M. D. Barkley, Biochemistry 3, 9976 (1998).

    Article  Google Scholar 

  4. G. Mei, A. Di Venere, A. F. Agro, et al., J. Fluoresc. 13, 467 (2003).

    Article  Google Scholar 

  5. E. A. Burshtein, Mol. Biol. (Moscow) 17, 455 (1983).

    Google Scholar 

  6. Y. K. Reshetnyak and E. A. Burstein, Biophys. J. 81, 1710 (2001).

    Article  Google Scholar 

  7. A. G. Szabo and D. M. Rayner, J. Am. Chem. Soc. 102, 554 (1980).

    Article  Google Scholar 

  8. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, New York, 2006).

    Book  Google Scholar 

  9. P. D. Adams, Y. Chen, K. Ma, et al., J. Am. Chem. Soc. 124, 9278 (2002).

    Article  Google Scholar 

  10. J. A. Ross and D. M. Jameson, Photochem. Photobiol. Sci. 7, 1301(2008).

    Article  Google Scholar 

  11. V. V. Gorokhov, P. P. Knox, B. N. Korvatovskiy, et al., Biochemistry (Moscow) 82, 1269 (2017).

    Article  Google Scholar 

  12. H. Liu, H. Zhang, and B. Jin, Spectrochim. Acta, Part A. 106, 54 (2013).

    Article  ADS  Google Scholar 

  13. E. Gudgin, R. Lopez-Deigado, and W. R. Ware, Phys. Chem. 87, 1559 (1983).

    Article  Google Scholar 

  14. J. W. Petrich, M. C. Chang, D. B. McDonald, and G. R. Fleming, J. Am. Chem. Soc. 105, 3824 (1983).

    Article  Google Scholar 

  15. M. Hellings, M. De Maeyer, and S. Verheyden, Biophys. J. 85, 1894 (2003).

    Article  Google Scholar 

  16. T. Liu, P. R. Callis, B. H. Hesp, and M. de Groot, J. Am. Chem. Soc. 127, 4104 (2005).

    Article  Google Scholar 

  17. C.-P. Pan, P. L. Muino, M. D. Barkley, and P. R. Callis, J. Phys. Chem. B 115, 3245 (2011).

    Article  Google Scholar 

  18. A. Kadyan, S. Juneja, and S. J. Pandey, Phys. Chem. B 123, 7578 (2019).

    Article  Google Scholar 

  19. J. B. A. Ross, H. R. Wyssbrod, R. A. Porter, and G. P. Schwartz, Biochemistry 31, 1585 (1992).

    Article  Google Scholar 

  20. T. E. S. Dahms, K. J. Willis, and A. G. Szabo, J. Am. Chem. Soc. 117, 2321(1995).

    Article  Google Scholar 

  21. I. Compagnon, F. C. Hagemeister, R. Antoine, et al., J. Am. Chem. Soc. 123, 8440 (2001).

    Article  Google Scholar 

  22. Physical Properties of Glycerine and Its Solutions (Glycerine Producers’ Association, New York, 1963).

  23. R. N. Havemeyer, J. Pharmaceut. Sci. 55, 851(1966).

    Article  Google Scholar 

  24. J. J. Towey, A. K. Soper, and L. Dougan, J. Phys. Chem. B 120, 4439 (2016) .

    Article  Google Scholar 

  25. Physical Chemistry, 3rd ed., Ed. by K. S. Krasnov (Vysshaya Shkola, Moscow, 2001) Vol. 1 [in Russian].

    Google Scholar 

  26. M. R. Hilairea, I. A. Ahmed, C.-W. Lina, et al., Proc. Natl. Acad. Sci. U. S. A. 114, 6005 (2017).

    Article  Google Scholar 

  27. P. R. Callis, J. Mol. Struct. 1077, 22 (2014).

    Article  ADS  Google Scholar 

  28. K. L. Han and G. J. Zhao, Hydrogen Bonding and Transfer in the Excited State (Wiley, Chichester, UK, 2011).

    Google Scholar 

  29. M. V. Hershberger and R. Lumry, Photochem. Photobiol. 23, 391(1976).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to E. P. Lukashev for his help in the measurements of the absorption and fluorescence spectra of tryptophan in an aqueous solution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Z. Paschenko.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by E. Puchkov

Abbreviations: Trp—tryptophan; CTS—charge-transfer state; DMSO—dimethylsulfoxide; HB—hydrogen bonds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paschenko, V.Z., Gorokhov, V.V., Korvatovsky, B.N. et al. A Study of the Temperature Dependence of Tryptophan Fluorescence Lifetime in the Range of –170 to +20°С in Various Solvents. BIOPHYSICS 66, 385–394 (2021). https://doi.org/10.1134/S0006350921030143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921030143

Navigation