Skip to main content
Log in

Chemiosmotic coupling of ion transport in the yeast vacuole: Its role in acidification inside organelles

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Acidification inside the vacuo-lysosome systems is ubiquitous in eukaryotic organisms and essential for organelle functions. The acidification of these organelles is accomplished by proton-translocating ATPase belonging to the V-type H+-ATPase superfamily. However, in terms of chemiosmotic energy transduction, electrogenic proton pumping alone is not sufficient to establish and maintain those compartments inside acidic. Current studies have shown that thein situ acidification depends upon the activity of V-ATPase and vacuolar anion conductance; the latter is required for shunting a membrane potential (interior positive) generated by the positively charged proton translocation. Yeast vacuoles possess two distinct Cl transport systems both participating in the acidification inside the vacuole, a large acidic compartment with digestive and storage functions. These two transport systems have distinct characteristics for their kinetics of Cl uptake or sensitivity to a stilbene derivative. One shows linear dependence on a Cl concentration and is inhibited by 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS). The other shows saturable kinetics with an apparentK m for Cl of approximately 20 mM. Molecular mechanisms of the chemiosmotic coupling in the vacuolar ion transport and acidification inside are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achstetter, T., and Wolf, D. H. (1985).Yeast 1 139–157.

    PubMed  Google Scholar 

  • Al-Awqati, Q. (1986).Annu. Rev. Cell Biol. 2 179–199.

    PubMed  Google Scholar 

  • Anraku, Y. (1987). InBioenergetics: Structure and Function of Energy-Transducing Systems (Ozawa, T., and Papa, S., eds.), Japan Scientific Societies Press, Tokyo, pp. 249–262.

    Google Scholar 

  • Anraku, Y., Umemoto, N., Hirata, R., and Wada, Y. (1989).J. Bioenerg. Biomembr. 21 589–603.

    PubMed  Google Scholar 

  • Anraku, Y., Umemoto, N., Hirata, R., and Ohya, Y. (1992a).J. Bioenerg. Biomembr. 24 395–405.

    PubMed  Google Scholar 

  • Anraku, Y., Hirata, R., Wada, Y., and Ohya, Y. (1992b).J. Exp. Biol. 172 67–81.

    PubMed  Google Scholar 

  • Arai, H., Pink, S., and Forgac, M. (1989).Biochemistry 28 3075–3082.

    PubMed  Google Scholar 

  • Baba, M., Takeshige, K., Baba, N., and Ohsumi, Y. (1994).J. Cell Biol.,124 903–913.

    PubMed  Google Scholar 

  • Bae, H-R., and Verkman, A. S. (1990).Nature (London)348 637–639.

    PubMed  Google Scholar 

  • Barash, J., Kiss, B., Prince, A., Saiman, L., Gruenert, D., and Al-Awqati, Q. (1991).Nature (London)352 70–73.

    PubMed  Google Scholar 

  • Bennett, A. B., and Spanswick, R. M. (1983).J. Membr. Biol. 71 95–107.

    Google Scholar 

  • Bertl, A., and Slayman, C. L. (1990).Proc. Natl. Acad. Sci. USA 87 7824–7828.

    PubMed  Google Scholar 

  • Blumward, E., and Poole, R. J. (1985).Plant Physiol. 78 163–167.

    Google Scholar 

  • Boller, T., and Wiemken, A. (1986).Annu. Rev. Plant Physiol. 37 137–164.

    Google Scholar 

  • Bordallo, C., Schwencke, J., and Suarez Rendueles, M. (1984).FEBS Lett. 173 199–203.

    PubMed  Google Scholar 

  • Bowman, B. J., Berensky, C. J., and Jung, C. Y. (1985).J. Biol. Chem. 260 8726–8730.

    PubMed  Google Scholar 

  • Bowman, E. J., Mandara, S., Taiz, L., and Bowman, B. J. (1986).Proc. Natl. Acad. Sci. USA 83 48–52.

    PubMed  Google Scholar 

  • Briskin, D. P., Thornley, R. W., and Wyse, R. E. (1985a).Plant Physiol. 78 865–870.

    Google Scholar 

  • Briskin, D. P., Thornley, R. W., and Wyse, R. E. (1985b).Plant Physiol. 78 871–875.

    Google Scholar 

  • Britten, C. J., Turner, J. C., and Rea, P. A. (1989).FEBS Lett. 256 200–206.

    Google Scholar 

  • Chanson, A., Fichmann, J., Spear, D., and Taiz, L. (1985).Plant Physiol. 79 159–164.

    Google Scholar 

  • Chiang, H.-L., and Schekman, R. (1991).Nature (London)350 313–318.

    PubMed  Google Scholar 

  • Churchill, K. A., and Sze, H. (1984).Plant Physiol. 76 490–497.

    Google Scholar 

  • Eilam, Y., Lavi, H., and Grossowicz, N. (1985).J. Gen. Microbiol. 131 623–629.

    Google Scholar 

  • Glickman, J., Croen, K., Kelly, S., and Al-Awqati, Q. (1983).J. Cell Biol. 97 1303–1308.

    PubMed  Google Scholar 

  • Greenfield, N. J., Hussain, M., and Lenard, J. (1987).Biochim. Biophys. Acta 926 205–214.

    PubMed  Google Scholar 

  • Hasebe, M., Hanada, H., Moriyama, Y., Maeda, M., and Futai, M. (1992).Biochem. Biophys. Res. Commun. 183 856–63.

    PubMed  Google Scholar 

  • Hedrich, R., Kurkdjian, A., and Flugge, A. I. (1989).EMBO J. 8 2835–2841.

    PubMed  Google Scholar 

  • Hirata, R., Umemoto, N., Ho, M. N., Ohya, Y., Stevens, T. H., and Anraku, Y. (1993).J. Biol. Chem. 268 961–967.

    PubMed  Google Scholar 

  • Ho, M. N., Hirata, R., Umemoto, N., Ohya, Y., Takatsuki, A., Stevens, T. H., and Anraku, Y. (1993).J. Biol. Chem. 268 18286–18292.

    PubMed  Google Scholar 

  • Iida, H., Sakaguchi, S., Yagawa, Y., and Anraku, Y. (1990).J. Biol. Chem. 265 21216–21222.

    PubMed  Google Scholar 

  • Jenness, D. D., and Spatrich, P. (1986).Cell 46 345–353.

    PubMed  Google Scholar 

  • Jones, E. W. (1984).Annu. Rev. Genet. 18 233–270.

    PubMed  Google Scholar 

  • Kaestner, K. H., and Sze, H. (1987).Plant Physiol. 83 483–489.

    Google Scholar 

  • Kaestner, K. H., Randall, S. K., and Sze, H. (1988).J. Biol. Chem. 263 1282–1287.

    PubMed  Google Scholar 

  • Kakinuma, Y., Ohsumi, Y., and Anraku, Y. (1981).J. Biol. Chem. 256 10859–10863.

    PubMed  Google Scholar 

  • Kakinuma, Y., Masuda, N., and Igarashi, K. (1992).Biochim. Biophys. Acta 1107 126–130.

    PubMed  Google Scholar 

  • Kane, P. M., Yamashiro, C. T., and Stevens, T. H. (1989).J. Biol. Chem. 264 19236–19244.

    PubMed  Google Scholar 

  • Kaneko, Y., Toh-e, A., and Oshima, Y. (1982).Mol. Cell. Biol. 2 127–137.

    PubMed  Google Scholar 

  • Kitamoto, K., Yoshizawa, K., Ohsumi, Y., and Anraku, Y. (1988a).J. Bacteriol. 170 2683–2686.

    PubMed  Google Scholar 

  • Kitamoto, K., Yoshizawa, K., Ohsumi, Y., and Anraku, Y. (1988b).J. Bacteriol. 170 2687–2691.

    PubMed  Google Scholar 

  • Klionsky, D. J., Herman, P. K., and Emr, S. D. (1990).Microbiol. Rev. 54 266–292.

    PubMed  Google Scholar 

  • Lai, S., Randall, S. K., and Sze, H. (1988).J. Biol. Chem. 263 16731–16737.

    PubMed  Google Scholar 

  • Maeshima, M. (1991).Eur. J. Biochem. 196 11–17.

    PubMed  Google Scholar 

  • Maeshima, M., and Yoshida, S. (1989).J. Biol. Chem. 264 20068–20073.

    PubMed  Google Scholar 

  • Mandara, S., and Taiz, L. (1985).Plant Physiol. 78 327–333.

    Google Scholar 

  • Manolson, M. F., Rea, P. A., and Poole, R. J. (1985).J. Biol. Chem. 260 12273–12279.

    PubMed  Google Scholar 

  • Martinoia, E., Schramm, M. J., Kaiser, G., Kaiser, W. M., and Heber, U. (1986).Plant Physiol. 80 895–901.

    Google Scholar 

  • Matsuura-Endo, C., Maeshima, M., and Yoshida, S. (1990).Eur. J. Biochem. 187 745–751.

    PubMed  Google Scholar 

  • Mellman, I., Fuchs, R., and Helenius, A. (1986).Annu. Rev. Biochem. 55 663–700.

    PubMed  Google Scholar 

  • Moriyama, Y., and Futai, M. (1990a).Biochem. Biophys. Res. Commun. 173 443–448.

    PubMed  Google Scholar 

  • Moriyama, Y., and Futai, M. (1990b).J. Biol. Chem. 265 9165–9169.

    PubMed  Google Scholar 

  • Moriyama, Y., Maeda, M., and Futai, M. (1992).J. Exp. Biol. 172 171–178.

    PubMed  Google Scholar 

  • Mulberg, A. E., Tulk, B. M., and Forgac, M. (1991).J. Biol. Chem. 266 20590–20593.

    PubMed  Google Scholar 

  • Ohsumi, Y., and Anraku, Y. (1981).J. Biol. Chem. 256 2079–2082.

    PubMed  Google Scholar 

  • Ohsumi, Y., and Anraku, Y. (1983).J. Biol. Chem. 258 5614–5617.

    PubMed  Google Scholar 

  • Ohya, Y., Umemoto, N., Tanida, I., Ohta, A., Iida, H., and Anraku, Y. (1991).J. Biol. Chem. 266 13971–13977.

    PubMed  Google Scholar 

  • Pope, A. J., and Leigh, R. A. (1987).Planta 172 91–100.

    Google Scholar 

  • Pope, A. J., Jennings, I. R., Sanders, D., and Leigh, R. A. (1990).J. Membr. Biol. 116 129–137.

    PubMed  Google Scholar 

  • Randall, S. K., and Sze, H. (1987).J. Biol. Chem. 262 7135–7141.

    PubMed  Google Scholar 

  • Rea, P. A., and Poole, R. J. (1985).Plant Physiol. 77 46–52.

    Google Scholar 

  • Rea, P. A., Griffith, C. J., and Sanders, D. (1987a).J. Biol. Chem. 262 14745–14752.

    PubMed  Google Scholar 

  • Rea, P. A., Griffith, C. J., Manolson, M. F., and Sanders, D. (1987b).Biochim. Biophys. Acta 904 1–12.

    Google Scholar 

  • Reenstra, W. W., Sabolic, I., Bae, H.-R., and Verkman, A. S. (1992).Biochemistry 31 175–181.

    PubMed  Google Scholar 

  • Riezman, H. (1985).Cell 40 1001–1009.

    PubMed  Google Scholar 

  • Sarafian, V., and Poole, R. J. (1989).Plant Physiol. 91 34–38.

    Google Scholar 

  • Sato, M., Maeshima, M., Ohsumi, Y., and Yoshida, M. (1991).FEBS Lett. 290 177–180.

    PubMed  Google Scholar 

  • Sato, M., Kasahara, M., Ishii, N., Homareda, H., Matsui, H., and Yoshida, M. (1994).J. Biol. Chem. 269 6725–6728.

    PubMed  Google Scholar 

  • Sato, T., Ohsumi, Y., and Anraku, Y. (1984a).J. Biol. Chem. 259 11505–11508.

    PubMed  Google Scholar 

  • Sato, T., Ohsumi, Y., and Anraku, Y. (1984b).J. Biol. Chem. 259 11509–11511.

    PubMed  Google Scholar 

  • Schneider, D. L. (1987).Biochim. Biophys. Acta 895 1–10.

    PubMed  Google Scholar 

  • Schumaker, K., and Sze, H. (1986).J. Biol. Chem. 261 12172–12178.

    PubMed  Google Scholar 

  • Schumaker, K., and Sze, H. (1987).Plant Physiol. 83 490–496.

    Google Scholar 

  • Stevens, T. H. (1992).J. Exp. Biol. 172 47–55.

    PubMed  Google Scholar 

  • Sze, H., Ward, J. M., and Lai, S. (1992).J. Biomembr. Bioenerg. 24 371–381.

    Google Scholar 

  • Tabb, J. S., Kish, P. E., Van Dyke, R., and Ueda, T. (1992).J. Biol. Chem. 267 15412–15418.

    PubMed  Google Scholar 

  • Takeshige, K., Tazawa, M., and Hager, A. (1988).Plant Physiol. 87 211–216.

    Google Scholar 

  • Takeshige, K., Baba, M., Tsuboi, S., Noda, T., and Ohsumi, Y. (1992).J. Cell Biol. 119 301–311.

    PubMed  Google Scholar 

  • Tanifuji, M., Sato, M., Wada, Y., Anraku, Y., and Kasai, M. (1988).J. Membr. Biol. 106 47–55.

    PubMed  Google Scholar 

  • Uchida, E., Ohsumi, Y., and Anraku, Y. (1985).J. Biol. Chem. 260 1090–1095.

    PubMed  Google Scholar 

  • Umemoto, N., Yoshihisa, T., Hirata, R., and Anraku, Y. (1990).J. Biol. Chem. 265 18447–18453.

    PubMed  Google Scholar 

  • Umemoto, N., Ohya, Y., and Anraku, Y. (1991).J. Biol. Chem. 266 24526–24532.

    PubMed  Google Scholar 

  • Urech, K., Dürr, K., Boller, T., Wiemken, A., and Schwencke, J. (1978).Arch. Microbiol. 116 275–278.

    PubMed  Google Scholar 

  • von Figura, K., and Hasilik, A. (1986).Annu. Rev. Biochem. 55 167–193.

    PubMed  Google Scholar 

  • Wada, Y., Ohsumi, Y., Tanifuji, M., Kasai, M., and Anraku, Y. (1987).J. Biol. Chem. 262 17260–17263.

    PubMed  Google Scholar 

  • Wada, Y., Kitamoto, K., Kanbe, T., Tanaka, K., and Anraku, Y. (1990).Mol. Cell Biol. 10 2214–2223.

    PubMed  Google Scholar 

  • Wada, Y., Ohsumi, Y., and Anraku, Y. (1992a).Biochim. Biophys. Acta 1101 296–302.

    PubMed  Google Scholar 

  • Wada, Y., Ohsumi, Y., and Anraku, Y. (1992b).J. Biol. Chem. 267 18665–18670.

    PubMed  Google Scholar 

  • Wilson, D. W., Lewis, M. J., and Pelham, H. R. B. (1993).J. Biol. Chem. 268 7465–7468.

    PubMed  Google Scholar 

  • Wiemken, A., Schellenberg, M., and Urech, K. (1979).Arch. Microbiol. 123 23–35.

    Google Scholar 

  • Yoshihisa, T., and Anraku, Y. (1989).Biochem. Biophys. Res. Commun. 163 908–915.

    PubMed  Google Scholar 

  • Yoshihisa, Y., Ohsmui, Y., and Anraku, Y. (1988).J. Biol. Chem. 263 5158–5163.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wada, Y., Anraku, Y. Chemiosmotic coupling of ion transport in the yeast vacuole: Its role in acidification inside organelles. J Bioenerg Biomembr 26, 631–637 (1994). https://doi.org/10.1007/BF00831538

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00831538

Key words

Navigation