Skip to main content
Log in

Mechanism of ATP synthesis by mitochondrial ATP synthase from beef heart

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Previous studies of the rate constants for the elementary steps of ATP hydrolysis by the soluble and membrane-bound forms of beef heart mitochondrial F1 supported the proposal that ATP is formed in high-affinity catalytic sites of the enzyme with little or no change in free energy and that the major requirement for energy in oxidative phosphorylation is for the release of product ATP.

The affinity of the membrane-bound enzyme for ATP during NADH oxidation was calculated from the ratio of the rate constants for the forward binding step (k +1) and the reverse dissociation step (k −1).k −1 was accelerated several orders of magnitude by NADH oxidation. In the presence of NADH and ADP an additional enhancement ofk −1 was observed. These energy-dependent dissociations of ATP were sensitive to the uncoupler FCCP.k +1 was affected little by NADH oxidation. The dissociation constant (K d ATP) increased many orders of magnitude during the transition from nonenergized to energized states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al Shawi, M. K., and Senior, A. E. (1988).J. Biol. Chem. 263 19640–19648.

    PubMed  Google Scholar 

  • Bragg, P. D., Davies, P. L., and Hou, C. (1973).Arch. Biochem. Biophys. 159 664–671.

    Google Scholar 

  • Boyer, P. D. (1993).Biochim. Biophys. Acta 1140 215–250.

    PubMed  Google Scholar 

  • Boyer, P. D., Cross, R. L., and Momsen, W. (1973).Proc. Natl. Acad. Sci. USA 70 2837–2839.

    PubMed  Google Scholar 

  • Cross, R. L., Grubmeyer, C., and Penefsky, H. S. (1982).J. Biol. Chem. 257 12101–12105.

    PubMed  Google Scholar 

  • Cunningham, D., and Cross, R. L. (1988).J. Biol. Chem. 263 18850–18856.

    PubMed  Google Scholar 

  • Engelbrecht, S., and Junge, W. (1990).Biochim. Biophys. Acta 1015 379–390.

    PubMed  Google Scholar 

  • Futai, M., Sternweiss, P. C., and Heppel, L. A. (1974).Proc. Natl. Acad. Sci. USA 71 2725–2729.

    PubMed  Google Scholar 

  • Graber, P., Fromme, P., Junesch, U., Schmidt, G., and Thulk, G. (1986).Ber. Bunsenges. Phys. Chem. 90 1034–1040.

    Google Scholar 

  • Grubmeyer, C., and Penefksy, H. S. (1981a).J. Biol. Chem. 256 3718–3727.

    PubMed  Google Scholar 

  • Grubmeyer, C., and Penefsky, H. S. (1981b).J. Biol. Chem. 256 3728–3734.

    PubMed  Google Scholar 

  • Grubmeyer, C., Cross, R. L., and Penefsky, H. S. (1982).J. Biol. Chem. 257 12092–12100.

    PubMed  Google Scholar 

  • Hisabori, T., Muneguki, E., Odaka, M., Yokoyama, K., Mochizuki, K., and Yoshida, M. (1992).J. Biol. Chem. 267 4551–4556.

    PubMed  Google Scholar 

  • Jencks, W. P. (1975).Adv. Enzymol. 43 219–410.

    PubMed  Google Scholar 

  • Jencks, W. P. (1989).Methods Enzymol. 171 145–164.

    PubMed  Google Scholar 

  • Kayalar, C., Rosing, J., and Boyer, P. D. (1977).J. Biol. Chem. 252 2486–2491.

    PubMed  Google Scholar 

  • Matsuno-Yagi, A., and Hatefi, Y. (1985).J. Biol. Chem. 260 14424–14427.

    Google Scholar 

  • Mendel-Hartvig, J., and Capaldi, R. A. (1991).Biochim. Biophys. Acta 1060 115–124.

    PubMed  Google Scholar 

  • Mitchell, P. (1961).Nature (London)191 144–148.

    PubMed  Google Scholar 

  • Mueller, D. M. (1989).J. Biol. Chem. 264 16552–16556.

    PubMed  Google Scholar 

  • Noumi, T., Taniai, M., Kanazawa, H., and Futai, M. (1986).J. Biol. Chem. 261 9196–9201.

    PubMed  Google Scholar 

  • Penefsky, H. S. (1985a).J. Biol. Chem. 260 13728–13734.

    PubMed  Google Scholar 

  • Penefsky, H. S. (1985b).J. Biol. Chem. 260 13735–13741.

    PubMed  Google Scholar 

  • Penefsky, H. S. (1985c).Proc. Natl. Acad. Sci. USA 82 1589–1593.

    PubMed  Google Scholar 

  • Penefsky, H. S. (1986).Methods Enzymol. 126 608–618.

    PubMed  Google Scholar 

  • Penefsky, H. S., and Cross, R. L. (1991).Adv. Enzymol. Relat. Areas Mol. Biol. 64 173–214.

    PubMed  Google Scholar 

  • Rosing, J., Kayalar, C., and Boyer, P. D. (1977).J. Biol. Chem. 252 2478–2485.

    PubMed  Google Scholar 

  • Souid, A. K., and Penefsky, H. S. (1994). Unpublished observations.

  • Sternweis, P. C., and Smith, J. B. (1977).Biochemistry 16 4020–4025.

    PubMed  Google Scholar 

  • Xiao, R., and Penefsky, H. S. (1994).J. Biol. Chem., in press.

  • Yohda, M., and Yoshida, M. (1987).J. Biochem. 269 4233–4239.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souid, A.K., Penefsky, H.S. Mechanism of ATP synthesis by mitochondrial ATP synthase from beef heart. J Bioenerg Biomembr 26, 627–630 (1994). https://doi.org/10.1007/BF00831537

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00831537

Key words

Navigation