Skip to main content
Log in

Microwave absorption measurements of the electrical conductivity of small particles

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A microwave absorption technique based on cavity perturbation theory is shown to be applicable for electrical conductivity measurements of both a small, single-crystal particle and finely divided powder samples whenσ values fall in either the low (σ<0.1 Ω−1 cm−1) or the intermediate (0.1 ≤σ≤ 100 Ω−1 cm−1) conductivity region. The results here pertain to semiconductors in the latter region. If the skin depth of the material becomes significantly smaller than the sample dimension parallel to theE-field, an appreciable error can be introduced into the calculated conductivity values; however, this discrepancy is eliminated by correcting for the field attenuation associated with the penetration depth of the microwaves. A modification of this approach utilizing the skin depth allows a first-order correction to be applied to powder samples which results in the accurate measurement of absoluteσ values, and results with doped Si powders are compared toσ values obtained from one small single particle using this microwave technique as well as reported DCσ values determined with single crystals. The use of this microwave absorption technique with small particles having high surface/volume ratios, such as catalyst supports and oxide catalysts, under controlled environments can provide fundamental information about adsorption and catalytic processes on such semiconductor surfaces. An application to a ZnO powder demonstrates this capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.R. Nag, G. Ghosh and S. Dhar, Solid-State Electronics 35 (1992) 1823.

    Google Scholar 

  2. T.J. Gray, Measurement of semiconductivity, photoconductivity, and associated properties of catalysts, in:Experimental Methods in Catalytic Research, ed. R.B. Anderson (Academic Press, New York, 1968) ch. 7.

    Google Scholar 

  3. K.H. Oh, C.K. Ong and B.T.G. Tan, J. Phys. E 22 (1989) 876.

    Google Scholar 

  4. B.-K. Na, M.A. Vannice and A.B. Walters, Phys. Rev. B 46 (1992) 12226.

    Google Scholar 

  5. B.-K. Na, S.L. Kelly, M.A. Vannice and A.B. Walters, Meas. Sci. Technol. 2 (1991) 770.

    Google Scholar 

  6. M. Godlewski, Phys. Stat. Sol. (a) 51 (1979) K141.

    Google Scholar 

  7. J. Kawamura and Y. Oyama, Solid State Ionics 35 (1989) 311.

    Google Scholar 

  8. T. Fukuroi and K. Yamagata, Sci. Rep. RITU A 11 (1959) 285.

    Google Scholar 

  9. M.D. Sastry, R.M. Kadam, Y. Babu, A.G.I. Dalvi, I.K. Gopalkrishnan, P.V.P.S. Sastry and R.M. Iyer, Physica C 153 (1988) 1667.

    Google Scholar 

  10. E.M. Trukhan, Soviet Phys. Sol. State 4 (1963) 2560.

    Google Scholar 

  11. S. Sen, P.K. Saha and B.R. Nag, Rev. Sci. Instrum. 50 (1979) 1594.

    Google Scholar 

  12. V.R.K. Murthy and R. Raman, Solid State Commun. 70 (1989) 847.

    Google Scholar 

  13. B.-K. Na, PhD Thesis, The Pennsylvania State University, USA (1991).

    Google Scholar 

  14. J.L. Altman,Microwave Circuits (Van Nostrand, Princeton, 1964).

    Google Scholar 

  15. N.P. Ong, PhD Thesis, The University of California, Berkeley, USA (1976).

    Google Scholar 

  16. N.P. Ong, J. Appl. Phys. 48 (1977) 2935.

    Google Scholar 

  17. L.I. Buranov and I.F. Shchegolev, Instr. Exp. Tech. 2 (1971) 528.

    Google Scholar 

  18. N.P. Ong, W. Bauhofer and C. Wei, Rev. Sci. Instrum. 52 (1981) 1367.

    Google Scholar 

  19. M. Cohen, S.K. Khanna, W.J. Gunning, A.F. Gartio and A.J. Heeger, Solid State Commun. 17 (1975) 367.

    Google Scholar 

  20. J.C. Irvin, Bell Syst. Tech. J. 41 (1962) 387.

    Google Scholar 

  21. D.M. Caughey and R.E. Thomas, Proc. IEEE 55 (1967) 2192.

    Google Scholar 

  22. W.R. Thurber, R.L. Mattis, Y.M. Liu and J.J. Filliben, J. Electrochem. Soc. 127 (1980) 1807.

    Google Scholar 

  23. W.R. Thurber, R.L. Mattis, Y.M. Liu and J.J. Filliben, J. Electrochem. Soc. 127 (1980) 2291.

    Google Scholar 

  24. P.M. Lenahan and J. Dressendorfer, Appl. Phys. 55 (1984) 3495.

    Google Scholar 

  25. D.D. Eley and R. Pethig, Discussions Faraday Soc. 51 (1971) 164.

    Google Scholar 

  26. E.M. Trukhan, Instr. Exp. Tech. 4 (1965) 947.

    Google Scholar 

  27. M.M. Sayed and C.R. Westgate, Rev. Sci. Instrum. 46 (1975) 1074.

    Google Scholar 

  28. M.M. Sayed, PhD Thesis, The Johns Hopkins University, USA (1972).

    Google Scholar 

  29. B.-K. Na, A.B. Walters and M.A. Vannice, J. Catal. 140 (1993) 585.

    Google Scholar 

  30. J.A. Osborn, Phys. Rev. 67 (1945) 351.

    Google Scholar 

  31. L.C. Shen and J.A. Kong,Applied Electromagnetism (PWS Engineering, Boston, 1987).

    Google Scholar 

  32. N.W. Ashcroft and N.D. Mermin,Solid State Physics (Holt, Rinehart and Winston, New York, 1976).

    Google Scholar 

  33. C.P. Poole,Electron Spin Resonance: A Comprehensive Treaty on Experimental Techniques (Wiley, New York, 1983).

    Google Scholar 

  34. C.-C. Liu, PhD Thesis, The Pennsylvania State University, in progress.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C.C., Na, B.K., Walters, A.B. et al. Microwave absorption measurements of the electrical conductivity of small particles. Catal Lett 26, 9–24 (1994). https://doi.org/10.1007/BF00824028

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00824028

Keywords

Navigation