Skip to main content
Log in

Alkylation of phenol with 1-propanol and 2-propanol over catalysts derived from hydrotalcite-like anionic clays

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Vapour phase alkylation of phenol with 1-propanol and 2-propanol was carried out in a fixed-bed flow reactor over calcined magnesium aluminium hydrotalcites (MgAl-CHT) with Mg/Al atomic ratios 2, 3 and 4. MgAl 3.0-CHT showed higher phenol conversion (∼80% at 350‡C, in the alkylation of phenol with 1-propanol. Both O- and C-alkylations were found to be taking place without any skeletal isomerization of the propyl moiety, suggesting an SN2 type mechanism. Isomorphous substitution of Mg2+ by Cu2+ or Ni2+ in the hydrotalcite framework resulted in the predominant C-alkylation to give 2-n-propylphenol (60–70%) with nearly 40–50% phenol conversion at 350‡C. When 2-propanol was used as an alkylating agent, the phenol conversion decreased over all these catalysts and the alkylation was noticed exclusively at C-centers. Comparison of the product selectivity at constant phenol conversion revealed that CuAl 3.0-CHT is more selective for 2-n-propylphenol and 2-isopropylphenol in the reaction of phenol with 1-propanol and 2-propanol respectively. The participation of a pair of acid-base sites in the calcined hydrotalcites for the alkylation reaction has been proposed. The acid-base properties of these catalysts have been examined by the decomposition of cyclohexanol as a test reaction. Analysis of the spent catalysts revealed that Cu2+ in CuO gets reduced into Cu1+ and metallic copper during the reaction in the case of CuAl-CHT, while MgO and NiO phases of MgAl-CHT and NiAl-CHT are retained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Dowbenko in:Kirk-Othmer, Encyclopedia of Chemical Technology, 4th Ed., Vol. 2, eds. J.I. Kroschwitz and M. Houl-Grant (Wiley, New York, 1992) p. 106.

    Google Scholar 

  2. M.C. Samolada, E. Grgoriadou, Z. Kiparissides and I.A. Vasalos, J. Catal. 152 (1995) 52, and references therein.

    Google Scholar 

  3. B. Choudhri and M.M. Sharma, Ind. Eng. Chem. Res. 30 (1991) 227.

    Google Scholar 

  4. H. Fiege, in:Encyclopedia of Industrial Chemistry, Vol. A19, eds. B. Elvers, S. Hawkins and G. Schultz (VCH Verlag, Weinheim, 1991) p. 313.

    Google Scholar 

  5. S.V. Kannan and C.N. Pillai, Indian J. Chem. 8 (1970) 1144.

    Google Scholar 

  6. S. Karuppannasamy, K. Narayanan and C.N. Pillai, J. Catal. 66 (1980) 281.

    Google Scholar 

  7. L.H. Klemm and D.R. Taylor, J. Org. Chem. 45 (1980) 4320.

    Google Scholar 

  8. L.H. Klemm and D.R. Taylor, J. Org. Chem. 45 (1980) 4326.

    Google Scholar 

  9. W.T. Reichle, CHEMTECH (1986) 58.

  10. F. Cavani, F. TrifirÒ and A. Vaccari, Catal. Today 11 (1991) 173.

    Google Scholar 

  11. F. TrifirÒ and A. Vaccari in:Comprehensive Supramolecular Chemistry, eds. J.L. Atwood, D.D. Macwicol, J.E.D. Davies and F. Vogtle (Pergamon, Oxford, 1995) ch. 10.

    Google Scholar 

  12. A. Corma, S. Iborra, J. Primo and F. Rey, Appl. Catal. 114 (1994) 215.

    Google Scholar 

  13. D. Tichit, M.H. Lhouty, A. Guida, B.H. Chiche, F. Figueras, A. Auronx, D. Bartalini and E. Garrone, J. Catal. 151 (1995) 50.

    Google Scholar 

  14. M.J. Climent, A. Corma, S. Iborra and J. Primo, J. Catal. 151 (1995) 60.

    Google Scholar 

  15. H. Tsuiji, F. Yagi, H. Hattori and H. Kita, J. Catal. 148 (1994) 759.

    Google Scholar 

  16. K. Kaneda, S. Veno and T. Imanaka, J. Chem. Soc. Chem. Commun. (1994) 797.

  17. S.M. Auer, M. Schneider and A. Baiker, J. Chem. Soc. Chem. Commun. (1995) 2057.

  18. S. Velu and C.S. Swamy, Appl. Catal. 119 (1994) 241.

    Google Scholar 

  19. S. Velu and C.S. Swamy, Appl. Catal., in press.

  20. S. Velu and C.S. Swamy, React. Kinet. Catal. Lett., accepted.

  21. S. Kannan, S. Velu, V. Ramkumar and C.S. Swamy, J. Mater. Sci. 30 (1995) 1462.

    Google Scholar 

  22. S. Velu, D. Samuel and C.S. Swamy, in:Catalysis Modern Trends, eds. N.M. Gupta and D.K. Chakrabarthy (Narosa, New Delhi, 1995) p. 470.

    Google Scholar 

  23. S. Velu and C.S. Swamy, in:Euroclay'95; Clays and Clay Materials Science, Leuven, August 1995, Extended Abst. No. 5.2.

  24. S. Narayanan, V.V. Rao and V. Durgakumari, J. Mol. Catal. 52 (1989) L29.

    Google Scholar 

  25. C.P. Bezouhanova and M.A. Al-Zihari, Catal. Lett. 11 (1991) 245.

    Google Scholar 

  26. S. Karuppannasamy, PhD Thesis, Indian Institute of Technology, Madras, India (1980) p. 33.

    Google Scholar 

  27. J. Shen, J.M. Kobe, Yi Chem and J.A. Dumesic, Langmuir 10 (1994) 3902.

    Google Scholar 

  28. A. Corma, V. Fornes and F. Rey, J. Catal. 148 (1994) 205.

    Google Scholar 

  29. S. Kannan and C.S. Swamy, Appl. Catal. B 3 (1994) 109.

    Google Scholar 

  30. H. Chang, M.A. Saleque, W. Hsu and W. Lin, J. Mol. Catal. 94 (1994) 233.

    Google Scholar 

  31. F. Pepe, C. Angeletti, S.D. Ross and M.L. Jacono, J. Catal. 91 (1985) 69.

    Google Scholar 

  32. J.C. Volta, P. Turlier and Y. Trambouze, J. Catal. 34 (1974) 329.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velu, S., Swamy, C.S. Alkylation of phenol with 1-propanol and 2-propanol over catalysts derived from hydrotalcite-like anionic clays. Catal Lett 40, 265–272 (1996). https://doi.org/10.1007/BF00815294

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00815294

Keywords

Navigation