Skip to main content
Log in

The oxidative coupling of methane and the activation of molecular O2 on CeO2/BaF2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

CeO2/BaF2 was used as the catalyst for the oxidative coupling of methane (OCM). At 800°C and CH4∶O2=2.7∶1,CH4 conversion of 34% with C2 hydrocarbon selectivity of 54.3% was obtained. XRD measurement showed that partial anion (O2−,F) and/or cation (Ce4+,Ba2+) exchange between CeO2 and BaF2 lattices occurred. ESR study showed that O species existed on degassed catalyst. XPS study revealed that, when BaF2 was added to CeO2, the binding energy of Be 3d5/2 was 2.2 eV lower than that in CeO2, and the “electron-enriched lattice oxygen” species was detected. XPS, ESR and Raman study showed that, under O2 adsorbing conditions, O 2−2 and O 2 species were detected on CeO2/BaF2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Wohlfahrt, M. Bergfeld and H. Zengel, German Patent 3503664 (1986).

  2. T.R. Baldwin, R. Burch, E.M. Crabb, G.D. Squire and S.C. Tsang, Appl. Catal. 56 (1989) 219.

    Google Scholar 

  3. R. Burch, G.D. Squire and S.C. Tsang, Appl. Catal. 43 (1988) 105;

    Google Scholar 

  4. R. Burch, G.D. Squire and S.C. Tsang, Appl. Catal. 46 (1989) 69.

    Google Scholar 

  5. X.P. Zhou, S.Q. Zhou, S.J. Wang, J.X. Cai, W.Z. Weng, H.L. Wan and K.R. Tsai, Chemical Research in Chinese Universities 9 (1993) 264.

    Google Scholar 

  6. X.P. Zhou, W.D. Zhang, H.L. Wan and K.R. Tsai, Catal. Lett. 21 (1993) 113.

    Google Scholar 

  7. X.P. Zhou, Z.S. Chao, S.J. Wang, W.Z. Weng, H.L. Wan and K.R. Tsai,The 4th China-Japan Bilateral Symposium on Effective Utilization of Carbon Resources, Dalian, October 1993, p. 37.

  8. J.L. Gland, B.A. Sexton and G.B. Fisher, Surf. Sci. 95 (1980) 587.

    Google Scholar 

  9. B.A. Sexton and R.J. Madix, Chem. Phys. Lett. 76 (1980) 294.

    Google Scholar 

  10. A.A. Davydov, Kinet. Katal. 20 (1979) 1506.

    Google Scholar 

  11. Y. Inoue and I. Yasumori, Bull. Chem. Soc. Jpn. 54 (1981) 1505.

    Google Scholar 

  12. X.D. Peng and D.C. Stair, J. Catal. 128 (1991) 264.

    Google Scholar 

  13. A. Metcalfe and S. Ude Shanker, J. Chem. Soc. Faraday Trans. 176 (1980) 630.

    Google Scholar 

  14. C. Backx, P.P.M. de Groot and P. Biloen, Surf. Sci. 104 (1981) 300.

    Google Scholar 

  15. D.W.L. Griffiths, H.E. Hallam and W.J. Thomas, J. Catal. 17 (1970) 18.

    Google Scholar 

  16. F. Al-Mashta, N. Sheppard, V. Lorenzelli and G. Busca, J. Chem. Soc. Faraday Trans. I 78 (1982) 979.

    Google Scholar 

  17. A.A. Davydov, M.P. Komarova, V.F. Anufrienko and N.G. Maksimov, Kinet. Katal. 14 (1973) 1519.

    Google Scholar 

  18. A.A. Tsynganenko, J.A. Rodionova and V.N. Filimonov, React. Kinet. Catal. Lett. 11 (1979) 113.

    Google Scholar 

  19. A.B.P. Lever, G.A. Ozin and H. B. Gray, Inorg. Chem. 19 (1990) 1823.

    Google Scholar 

  20. J.S. Valentine, Chem. Rev. 73 (1973) 237.

    Google Scholar 

  21. A. Metcalfe and S. Ude Shankar, J. Chem. Soc. Faraday Trans. 176 (1980) 630.

    Google Scholar 

  22. B.A. Sexton and R.J. Madix, Chem. Phys. Lett. 76 (1980) 294.

    Google Scholar 

  23. C. Li, K. Domen, K. Maruya and T. Onishi, J. Chem. Soc. Chem. Commun. (1988) 1541.

  24. L. Andrews, J.T. Hwang and C. Trindle, J. Phys. Chem. 77 (1973) 1065.

    Google Scholar 

  25. R.R. Smardzewski and L. Andrews, J. Phys. Chem. 77 (1973) 801.

    Google Scholar 

  26. R.R. Smardzewski and L. Andrews, J. Chem. Phys. 57 (1972) 1327.

    Google Scholar 

  27. D. Mcintosh and G.A. Ozin, Inorg. Chem. 16 (1977) 59.

    Google Scholar 

  28. C. Li. K. Domen, K.I. Maruya and T. Onishi, J. Am. Chem. Soc. 111 (1989) 7683.

    Google Scholar 

  29. A. Zecchina, G. Spoto and S. Coluccia, J. Mol. Catal. 14 (1982) 351.

    Google Scholar 

  30. E. Giamello, Z. Sojka, M. Che and A. Zecchina J. Phys. Chem. 90 (1986) 6084.

    Google Scholar 

  31. C. Li, K. Domen, K.I. Maruya and T. Onishi, J. Am. Chem. Soc. 111 (1989) 7683.

    Google Scholar 

  32. A.A. Tsyganenko and V.N. Filimonov, Spectrosc. Lett. 13 (1980) 583.

    Google Scholar 

  33. A.A. Tsyganenko, T.A. Rodionova and V.N. Filimonov, React. Kinet. Catal. Lett. 11 (1979) 113.

    Google Scholar 

  34. H. Forster and M. Schuldt, J. Chem. Phys. 66 (1977) 5237.

    Google Scholar 

  35. M. Iwamoto, Y. Yoda, N. Yamazoe and T. Seiyama, J. Phys. Chem. 82 (1978) 2564.

    Google Scholar 

  36. T. Ito, Masayokato, K. Toi, T. Shirakawa, I. Ikemoto and T. Tokuda, J. Chem. Soc. Faraday Trans. 181 (1985) 2835.

    Google Scholar 

  37. T. Ito, M. Yoshioka and T. Tokuda, J. Chem. Soc. Faraday Trans. I 79 (1983) 2277.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the State Key Laboratory for Physical Chemistry of the solid surface and the National Science Foundation of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X.P., Chao, Z.S., Weng, W.Z. et al. The oxidative coupling of methane and the activation of molecular O2 on CeO2/BaF2 . Catal Lett 29, 177–188 (1994). https://doi.org/10.1007/BF00814264

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00814264

Keywords

Navigation