Skip to main content
Log in

Enhanced coke resistance of boron-promoted Co/P/Al2O3 catalysts in dry reforming of methane

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The effect of a boron promoter (B/Co molar ratio of 0 − 0.2) on a Co-based catalyst in the dry reforming of methane (DRM) was investigated. All catalysts were characterized via X-ray diffraction, N2-physisorption, transmission electron microscopy, CH4-thermogravimetric analysis (CH4-TGA), and X-ray photoelectron spectroscopy to evaluate the crystallinity, surface structure, morphology, coke deposition, and oxidation state. The DRM results showed that all catalysts exhibited similar catalytic performances except boron in high quantities. An appropriate loading of boron reduced the deactivation degree by over one or twofold for CO2 and CH4, respectively, compared to the boron-unpromoted catalyst. The boron-promoted catalyst showed a small weight increase compared to the unpromoted catalyst during CH4-TGA, indicating less coke deposition. The filamentous-type carbon species were detected on the boron-unpromoted catalyst after DRM, while filamentous carbon species were barely observed on the boron-promoted catalysts. Conclusively, boron promotion influences the deactivation degree by suppressing coke deposition.

Graphical abstract

Addition of small amount of B to Co/P(2)/Al2O3 catalyst improves a coke resistance during the dry reforming of methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.-J. Jang, J.-O. Shim, H.-M. Kim, S.-Y. Yoo, H.-S. Roh, Catal. Today 324, 15 (2019)

    Article  CAS  Google Scholar 

  2. A.W. Budiman, S.-H. Song, T.-S. Chang, C.-H. Shin, M.-J. Choi, Catal. Surv. Asia 16, 183 (2012)

    Article  CAS  Google Scholar 

  3. M. Usman, W.M.A.W. Daud, H.F. Abbas, Renew. Sustain. Energy Rev. 45, 710 (2015)

    Article  CAS  Google Scholar 

  4. D. Pakhare, J. Spivey, Chem. Soc. Rev. 43, 7813 (2014)

    Article  CAS  Google Scholar 

  5. J. Kehres, J.G. Jakobsen, J.W. Andreasen, J.B. Wagner, H. Liu, A. Molenbroek, J. Sehested, I. Chorkendorff, T. Vegge, J. Phys. Chem. C. 116, 21407 (2012)

    Article  CAS  Google Scholar 

  6. A.I. Tsyganok, M. Inaba, T. Tsunoda, S. Hamakawa, K. Suzuki, T. Hayakawa, Catal. Commun. 4, 493 (2003)

    Article  CAS  Google Scholar 

  7. F. Wang, L. Xu, J. Yang, J. Zhang, L. Zhang, H. Li, Y. Zhao, H.X. Li, K. Wu, G.Q. Xu, W. Chen, Catal. Today 281, 295 (2017)

    Article  CAS  Google Scholar 

  8. B. Han, F. Wang, L. Zhang, Y. Wang, W. Fan, L. Xu, H. Yu, Z. Li, Res. Chem. Intermed. 46, 1735 (2020)

    Article  CAS  Google Scholar 

  9. B. AlSabban, L. Falivene, S.M. Kozlov, A. Aguilar-Tapia, S. Ould-Chikh, J.L. Hazemann, L. Cavallo, J.M. Basset, K. Takanabe, Appl. Catal. B: Environ. 213, 177–189 (2017)

    Article  CAS  Google Scholar 

  10. O. Daoura, G.E. Chawich, M. Boutros, N.E. Hassan, P. Massiani, O. Ersen, W. Baaziz, F. Launay, Catal. Commun. 138, 10593 (2020)

    Article  Google Scholar 

  11. C.G. Silva, F.B. Passos, V.T. Silva, J. Catal. 375, 507 (2019)

    Article  CAS  Google Scholar 

  12. J. Niu, Y. Wang, S.E. Liland, S.K. Regli, J. Yang, K.R. Rout, J. Luo, M. Ronning, J. Ran, D. Chen, ACS Catal. 11, 2398 (2021)

    Article  CAS  Google Scholar 

  13. J. Niu, S.E. Liland, J. Yang, K.R. Rout, J. Ran, D. Chen, Chem. Eng. J. 377, 119763 (2019)

    Article  CAS  Google Scholar 

  14. A. Giehr, L. Maier, S.A. Schunk, O. Deutschmann, ChemCatChem 10, 751 (2018)

    Article  CAS  Google Scholar 

  15. F. Mirzaei, M. Rezaei, F. Meshkani, Chem. Eng. Tech. 37, 973 (2014)

    Article  CAS  Google Scholar 

  16. K. Wittich, M. Krämer, N. Bottke, S.A. Schunk, ChemCatChem 12, 2130 (2020)

    Article  CAS  Google Scholar 

  17. A.I. Paksoy, B.S. Caglayan, A.E. Aksoylu, Appl. Catal. B: Environ. 168, 164 (2015)

    Article  Google Scholar 

  18. L. Chen, Q. Huang, Y. Wang, H. Xiao, W. Liu, D. Zhang, T. Yang, Int. J. Hydrogen Energy. 44, 19878 (2019)

    Article  CAS  Google Scholar 

  19. Ch. Anil, J.M. Modak, G. Madras, Mol. Catal. 484, 110805 (2020)

    Article  CAS  Google Scholar 

  20. J.H. Park, S.Y. Yeo, I.J. HeO, T.S. Chang, Appl. Catal. A: Gen. 562, 120 (2018)

    Article  CAS  Google Scholar 

  21. J.H. Park, S.Y. Yeo, T.J. Kang, H.R. Shin, I.J. Heo, T.S. Chang, J. CO2 Util. 23, 10 (2018)

    Article  CAS  Google Scholar 

  22. J.-H. Park, S.Y. Yeon, T.-J. Kang, I.J. Heo, W.-Y. Lee, T.-S. Chang, Fuel 212, 77 (2018)

    Article  CAS  Google Scholar 

  23. S. Singh, T.D. Nguyen, T.J. Siang, P.T.T. Phuong, N.H.H. Phuc, Q.D. Truong, S.S. Lam, D.-V.N. Vo, J. Energy Inst. 93, 31 (2020)

    Article  CAS  Google Scholar 

  24. A. Fouskas, M. Kollia, A. Kambolis, C. Papadopoulou, H. Matralis, Appl. Catal. A: Gen. 474, 125 (2014)

    Article  CAS  Google Scholar 

  25. K.F. Tan, J. Chang, A. Borgna, M. Sayes, J. Catal. 280, 50 (2011)

    Article  CAS  Google Scholar 

  26. A. Mosayebi, R. Abedini, J. Fuel Chem. Technol. 46, 311 (2018)

    Article  CAS  Google Scholar 

  27. A.J. Reynoso, J.L. Ayastuy, U. Iriarte-Velasco, M.A. Gutiérrez-Ortiz, Appl. Catal. B: Environ. 239, 86 (2018)

    Article  CAS  Google Scholar 

  28. Y.J. Wong, M.K. Koh, M. Khavarian, A.R. Mohamed, Int. J. Hydrogen Energy. 42, 28363 (2017)

    Article  CAS  Google Scholar 

  29. A. Jain, K. Joseph, S. Anthonysamy, G.S. Gupta, Thermochim. Acta 514, 67 (2010)

    Article  Google Scholar 

  30. J. Xu, M. Saeys, J. Catal. 242, 217 (2006)

    Article  CAS  Google Scholar 

  31. A.J. Al Abdulghani, J.H. Park, S.M. Kozlov, D.C. Kang, B. AlSabban, S. Pedireddy, A. Aguilar-Tapia, S. Ould-Chikh, J.L. Hazemann, J.M. Basset, L. Cavallo, J. Catal. 392,126 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been performed as a Project No. SI1901-03 and supported by the Korea Research Institute of Chemical Technology (KRICT).

Funding

This study was funded by Korea Research Institute of Chemical Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Hyun Park or Tae-Sun Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JH., Chang, TS. Enhanced coke resistance of boron-promoted Co/P/Al2O3 catalysts in dry reforming of methane. Res Chem Intermed 48, 3403–3413 (2022). https://doi.org/10.1007/s11164-022-04771-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04771-0

Keywords

Navigation