Skip to main content
Log in

Mode of coordination and stability of Cu(II) and Zn(II) complexes with adenosine, deoxyadenosine, cytidine and deoxycytidine

Art der Koordination und Stabilität von Cu(II)- und Zn(II)-Komplexen mit Adenosin, Deoxyadenosin, Cytidin und Deoxycytidin

  • Anorganische Und Physikalische Chemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Summary

Stability constants of Cu(II) and Zn(II) complexes with nucleosides have been determined from a computer analysis of potentiometric titration results. Spectral investigations prove that in acidic solution adenosine coordinates to Cu(II)via its N1 or N7 atoms, while atpH>7 only N7 is involved. Similar interactions are observed for dAdo complexes. Spectral and potentiometric studies suggest that Zn does not form stable complexes with dAdo. In the case of cytidine and deoxycytidine, the preferred site of coordination is the N3 atom of the nucleoside. Oxygen atoms from the carbonyl groups are not involved in Cu(II) or Zn(II) coordination. The results of the spectral investigation have excluded the ribose and deoxyribose moieties of all studied ligands from participation in the interactions. In general, the mode of coordination of nucleosides and deoxynucleosides with Cu(II) and Zn(II) has been found analogous.

Zusammenfassung

Mittels einer Computeranalyse von Ergebnissen aus potentiometrischen Titrationen wurden Stabilitätskonstanten für Komplexe aus Cu(II) bzw. Zn(II) und Nucleosiden bestimmt. Spektroskopische Untersuchungen zeigen, daß Adenosin in saurer Lösung über N1 oder N7 an Cu(II) koordinieren kann, während beipH>7 nur N7 reagiert. Analoges wird für die Komplexe mit dAdo beobachtet. Aus spektroskopischen und potentiometrischen Untersuchungen geht hervor, daß Zn mit dAdo keine stabilen Komplexe bildet. Im Fall von Cytidin und Deoxycytidin ist N3 die bevorzugte Koordinationsstelle des Nucleosids. Die Sauerstoffatome der Carbonylgruppen sind an der Bindung an Cu(II) und Zn(II) nicht beteiligt. Die spektroskopischen Ergebnisse schließen eine Beteiligung der Ribose- und Deoxyriboseeinheiten an den Wechselwirkungen aus. Allgemein wurde für Nucleoside und Deoxynucleoside ein analoger Koordinationsmodus gefunden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin R. B. (1986) Metal ions binding to nucleosides and nucleotides. In: Xavier A. V. (ed.) Frontiers in bioinorganic chemistry. VCH Press, Weinheim

    Google Scholar 

  2. Marzilli L. G. (1981) Metal ions in genetic information transfer. Eichorn G. L., Marzilli L. G. (eds) Elsevier/North-Holland, N. Y., Amsterdam, Oxford, p. 47

    Google Scholar 

  3. Casassas E., Izguierdo-Ridorsa A., Tauler R. (1990) J. Inorg. Biochem.39: 327

    Google Scholar 

  4. Kopf-Maier P., Kopf H. (1987) Chem. Rev.87: 1137

    Google Scholar 

  5. Sherman S. E., Lippard S. J. (1987) Chem. Rev.87: 1153

    Google Scholar 

  6. Tewari K. C., Lee J., Li N. C. (1970) Trans Farad. Soc.66: 2069

    Google Scholar 

  7. Martin R. B. (1985) Acc. Chem. Res.18: 32

    Google Scholar 

  8. De Castro B., Pereira J., Gameiro P., Lima J. L. F. C. (1992) J. Inorg. Biochem.45: 53

    Google Scholar 

  9. Kozelka J., Chottard J.-C. (1990) Biophys Chem.35: 165

    Google Scholar 

  10. Fichtinger-Schepman A. M. J., Van Oesterom A. I., Lohman P. M., Berens F. (1987) Cancer Res.47: 3000

    Google Scholar 

  11. Eastman A. (1986) Biochemistry25: 3912

    Google Scholar 

  12. Marzilli I. G., Kistenmacher Th., Eichhorn G. L. (1980) Nucleic acid-metal ion interaction. Spiro T. G. (ed.) Wiley, New York

    Google Scholar 

  13. Sigel H. (1980) Coordination Chemistry — 20. D. Benerjea D. (ed.) Pergamon Press, Oxford, New York

    Google Scholar 

  14. Kinjo Y., Tribolet R., Corfu N. A., Sigel H. (1989) Inorg. Chem.28: 1480

    Google Scholar 

  15. Scheller K. H., Scheller-Krattiger V., Martin R. B. (1981) J. Am. Chem. Soc.103: 6933

    Google Scholar 

  16. Kim S. H., Martin R. B. (1984) Inorg. Chim. Acta91: 19

    Google Scholar 

  17. Tauler R., Cid J. F., Casassas E. J. (1990) Inorg. Biochem.39: 277

    Google Scholar 

  18. Sigel H. (1987) Eur. J. Biochem.165: 65

    Google Scholar 

  19. Sigel H., Massound S. S., Tribolet R. (1988) J. Am. Chem. Soc.10: 6857

    Google Scholar 

  20. (1976) The Merck Index. Windholz M. (ed.) Merck and Co., Inc. Rahway, N. J., USA

    Google Scholar 

  21. Lomozik L. (1984) Monath. Chem.115: 261

    Google Scholar 

  22. Irving M. H., Miles M. G., Pettit L. D. (1967) Anal. Chim. Acta38: 475

    Google Scholar 

  23. Harper H. A., Rodwell V. W., Mayes P. A. (1979) Review of Physiological Chemistry. Lange Medical Publications, Los Altos

    Google Scholar 

  24. Zielonacka — Lis E. (1985) Stabilnosc wiazania glikozydowego modyfikowanych nukleozydow w reakcjach hydrolizy. Doctoral thesis (in Polish), Poznan

  25. Sayce I. G. (1968) Talanta115: 1397

    Google Scholar 

  26. Gans P., Sabatini A., Vacca A. (1985) J. Chem. Soc. Dalton Trans. 1195

  27. Lomozik L., Jaskolsksi M., Wojciechowska A. (1991) Polish J. Chem.65: 1797

    Google Scholar 

  28. Ingri N., Kakolowicz W., Sillen L. G., Warqvist B. (1967) Talanta14: 1261

    Google Scholar 

  29. Sigel H. (1989) Biol. Trace Elem Res.21: 49

    Google Scholar 

  30. Glasoe P. K., Long F. A. (1960) J. Phys. Chem.64: 188

    Google Scholar 

  31. Sovago J., Martin P. B. (1980) Inorg. Chem.19: 2868

    Google Scholar 

  32. Sigel H., McCormick D. B. (1970) Acc. Chem. Res.3: 201

    Google Scholar 

  33. Schneider P. W., Brintzinger H., Erlenmeyer H. (1964) Helv. Chim. Acta47: 992

    Google Scholar 

  34. Fiskin A. M., Beer M. (1965) Biochemistry1: 1249

    Google Scholar 

  35. Bario J. R., Sattsanyi P. D., Gruber B. A., Dariman L. G., Leonard N. J. (1976) J. Am. Chem. Soc.98: 7408

    Google Scholar 

  36. Mutai K., Gruber B. A., Leonard N. J. (1976) J. Am. Chem. Soc.98: 4095

    Google Scholar 

  37. Remin M., Shugar D. (1973) J. Am. Chem. Soc.95: 8136

    Google Scholar 

  38. Jones A. J., Grant D. M., Winkley M. M., Robins R. K. (1970) J. Am. Chem. Soc. 92: 4079

    Google Scholar 

  39. Espersen W. G., Hutton W. C., Chow S. T., Martin R. B. (1974) J. Am. Chem. Soc.96: 8111

    Google Scholar 

  40. Espersen W. G., Martin R. B. (1976) J. Am. Chem. Soc.98: 40

    Google Scholar 

  41. Beatie J. K., Fensom D. J., Freeman H. C. (1976) J. Am. Chem. Soc.98: 900

    Google Scholar 

  42. Gasowska A., Lomozik L., unpublished data

  43. Marzilli G., Castro B., Caradonna J. P., Stewart R. C., Van Vuuren C. P. (1980) J. Am. Chem. Soc.102: 916

    Google Scholar 

  44. Mathlouthi M., Seuvre A. M., Koenig J. (1983) Carbohydr. Res.122: 31

    Google Scholar 

  45. Mathlouthi M., Seuvre A. M., Koenig J. (1986) Carbohydr. Res.146: 1

    Google Scholar 

  46. Lettellier R., Ghomi M., Taillandier E. (1986) J. Biomol. Struct. Dynam.3: 671

    Google Scholar 

  47. Martin R. B. (1961) Fed. Proc.20 [Suppl. 10]: 54

    Google Scholar 

  48. Kinjo Y., Ji L., Corfu N. C., Sigel H. (1992) Inorg. Chem. 31: 5588

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasowska, A., Lomozik, L. Mode of coordination and stability of Cu(II) and Zn(II) complexes with adenosine, deoxyadenosine, cytidine and deoxycytidine. Monatsh Chem 126, 13–22 (1995). https://doi.org/10.1007/BF00811753

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00811753

Keywords

Navigation