Skip to main content
Log in

Fragen der molekularen Systemorganisation — I Eisen-Phenantrolin-Komplexe

Questions of molecular system organization—I. Iron-phenantroline complexes

  • Anorganische Und Physikalische Chemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Abstract

The rationalization of the properties of iron-phenantroline complexes has lead to their description in terms of Molecular System Organizations. In tris(phenantroline)iron complexes the coordination centre and its immediate environment, i.e. the FeN6 group is highly symmetrical and found nearly invariant towards changes in oxidation number, in substitution and in molecular environment. Its decisive regulating functions suggest its operation as the highest hierarchic level of the system. Subordinated to this hierarchic level appear the peripheric charge density regions of the complex ion, which are responsible for flexible adaptation of the system to its environment. The actions of this level are supported by the high flexibility of the π-electron system of the ligands and by the structural framework, both of which are considered to provide the lowest level.

As long as the highest level can provide for the invariance of the symmetrical framework of the FeN6 group, the complex is maintained in a low spin state. Distortion of the symmetry of the FeN6 group, as for example effectuated by a substituent in 2-position leads to an increase in dynamic properties and to the establishment of the high spin state, which is found also in bis(phenantroline)iron complexes (with less symmetrically arranged central regions). It is emphasized that anLSHS transition involves passage of a state of high dynamic order. It is suggested to useArrhenius plots of the rate coefficients of homologous reactions as a measure of the system organization, which appears to be improved as thek-values are approaching those evaluated for the isokinetic temperature. It is finally emphasized that it is principally impossible to acquire full and precise knowledge of the molecular organization of a real system. The limited knowledge accessible may, however, lead to new aspects both in materials science and in biochemical aspects of biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Chew C. F., Science161, 762 (1968); Physics Today23, 23 (1970).

    Google Scholar 

  2. Bohm D., Wholeness and Implicate Order. London: Routledge and Kegan Paul. 1980.

    Google Scholar 

  3. Primas H., Chimia36, 293 (1982).

    Google Scholar 

  4. Einstein A., Podolsky B., Rosen N., Phys. Rev.47, 777 (1935); siehe auchBell J. S., Physics1, 195 (1964); sowieFreedman S., Clausen J., Phys. Rev. Letters28, 938 (1972).

    Google Scholar 

  5. Weiss P. A., Within the Gates of Science and Beyond. New York: Futura Publishing Company. 1971.

    Google Scholar 

  6. Schild A. A., Analytical Application of Phenantroline and Related Compounds. London-New York: Pergamon Press. 1969.

    Google Scholar 

  7. Vlček A. A., Chem. Revs.43, 39 (1983); Rev. Chim. Min.20, 612 (1983).

    Google Scholar 

  8. Koepp H. M., Wendt H., Strehlow H., Z. Elektrochem.64, 483 (1960);Nelson I. V., Iwamoto R. T., Anal. Chem.35, 867 (1963).

    Google Scholar 

  9. Gritzner G., Kuta J., Pure Applied Chem.56, 461 (1984).

    Google Scholar 

  10. Mayer U., Kotocova A., Gutmann V., J. Electroanal. Chem.103, 409 (1979).

    Google Scholar 

  11. Baker F.,Engelhardt L. M.,Figgs B. N.,White A. H., J. Chem. Soc. Dalton1975, 530.

  12. Ussanovich M., Zhur. obshch. Khim.9, 182 (1939).

    Google Scholar 

  13. Gutmann V., Chemische Funktionslehre. Wien-New York: Springer. 1971.

    Google Scholar 

  14. Schmid R., Han L., Inorg. Chim. Acta69, 127 (1983).

    Google Scholar 

  15. Bond-Smith M. H., Sutin L., J. Amer. Chem. Soc.83, 1831 (1981).

    Google Scholar 

  16. Ugara K., Miyamoto K., Electrochim. Acta22, 1357 (1977).

    Google Scholar 

  17. Epstein M. L., J. chem. Phys.40, 435 (1964).

    Google Scholar 

  18. Greenwood N. N., Gibbs T. C., Mössbauer Spectroscopy. London: Chapman and Hall. 1971.

    Google Scholar 

  19. Gray V. K., Malathi Puri S. P., Chem. Phys. Letters11, 393 (1979).

    Google Scholar 

  20. Levison K. A., Perkins P. G., Theor. Chim. Acta14, 206 (1969).

    Google Scholar 

  21. Linert W.,Gutmann V.,Wiesinger G.,Perkins P. G., Z. physik. Chem. (Leipzig), im Druck.

  22. Schmid R., Soukup R. W., Arasteh M. K., Gutmann V., Inorg. Chim. Acta73, 21 (1983).

    Google Scholar 

  23. Gutmann V., The Donor-Acceptor Approach to Molecular Interactions. New York: Plenum Press. 1978.

    Google Scholar 

  24. Elsaesser M. V., The Chief Abstractions of Biology. Amsterdam: North-Holland. 1975.

    Google Scholar 

  25. Gutmann V., Resch G., Kratz R., Schauer H., Monatsh. Chem.115, 551 (1984).

    Google Scholar 

  26. Resch G., Gutmann V., Z. physik. Chem. (n. F.)121, 211 (1980).

    Google Scholar 

  27. Resch G., Gutmann V., Z. physik. Chem. (n. F.)126, 223 (1981).

    Google Scholar 

  28. Gutmann V., Resch G., Inorg. Chim. Acta72, 269 (1983).

    Google Scholar 

  29. Gutmann V., Resch G., Monatsh. Chem.114, 839 (1983).

    Google Scholar 

  30. Gutmann V., Resch G., Pure Applied Chem.53, 1447 (1981).

    Google Scholar 

  31. Gutmann V., Resch G., Comments Inorg. Chem.1, 265 (1982).

    Google Scholar 

  32. Primas H., Chemistry Quantum Mechanics and Reductionism. Berlin-Heidelberg-New York: Springer. 1983.

    Google Scholar 

  33. Saji T., Fukai T., Aoyagui S., J. Electroanal. Chem.66, 81 (1975).

    Google Scholar 

  34. Schmid R., Sapunov V., Non Formal Kinetics in Search for Chemical Reaction Pathways. Weinheim-New York: Verlag Chemie. 1982.Exner O., Phys. Org. Chem.10, 411 (1973).

    Google Scholar 

  35. Fleisch J., Gütlich P., Hasselbach K. M., Inorg. Chem.16, 1979 (1977).

    Google Scholar 

  36. König E., Ritter G., Goodwin H. A., J. Inorg. Nucl. Chem.39, 1773 (1977).

    Google Scholar 

  37. Goodwin H. A., Sylva R. N., Austral. J. Chem.21, 83 (1968).

    Google Scholar 

  38. Fleisch J., Gütlich P., Hasselbach K. M., Müller W., Inorg. Chem.15, 598 (1976).

    Google Scholar 

  39. Reiff W. M., Long C. J., Inorg. Chem.13, 2150 (1974).

    Google Scholar 

  40. Fleisch J., Gütlich P., Hasselbach K. M., Müller W., J. Physique 35 (12) C 6–659 (1974).

    Google Scholar 

  41. Fleisch J., Gütlich P., Hasselbach K. M., Inorg. Chim. Acta17, 51 (1976).

    Google Scholar 

  42. Gütlich P., Structure and Bonding44, 83 (1981).

    Google Scholar 

  43. König E., Watson K. J., Chem. Phys. Letters6, 457 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutmann, V., Resch, G. Fragen der molekularen Systemorganisation — I Eisen-Phenantrolin-Komplexe. Monatsh Chem 116, 1107–1123 (1985). https://doi.org/10.1007/BF00811244

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00811244

Keywords

Navigation