Skip to main content
Log in

Glykosylazide als Ausgangsbasis zur Gewinnung von Nucleosidanalogen, 3. Mitt. Synthese von Alkylaminotetrazol- und Uretidinonnucleosiden

Glykosylazides as starting materials for the preparation of nucleoside analogues, part III: Syntheses of alkylaminotetrazole- and uretidino nucleosides

  • Organische Chemie Und Biochemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Abstract

The β-ribofuranosylazide1 is transformed after usual derivatization by suitable protecting groups into the P–N-ylid2, which gives the corresponding N-Glykosyl-N-alkylcarbodiimides4 and a small amount of the glykosylisocyanatde-rivative3 by reaction with alkylisocyanates. The carbodiimides4 were reacted with hydrazoic acid to give the alkylaminotetrazolnucleosides5 and finally the free nucleosidanalogs6. In the case of5 c the 5-aziridinyltetrazolnucleosid5 h was formed by an usual neighbouring group reaction. In addition the compound1 is transformed into the 3′,5′-diprotected anchor derivative7 by reaction withTIPSCl2. The latter could be transformed by usual steps into the alkylaminotetra-zolnucleosides8 with a free 2′-OH group. In the next step the 2′-p-tolylthiocarbo-nates9 were prepared followed by transformation to the 2′-desoxynucleosides10 by means of tributyltinhydride. Finally the free 2′-desoxynucleosides11 were prepared. By reacting the carbodiimides4 with phenylisocyanate a mixture of the two possible regiouretidinonnucleosidderivatives12 and13 are formed. In the case of the N-glykosyl-N-allylcarbodiimide4 d only the one isomer13 d arises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. 2. Mitt.Zbiral E., Schörkhuber W (1982) Liebigs Ann Chem 1982: 1870

    Google Scholar 

  2. Suhadolnik RJ (1970) Nucleoside antibiotics. Wiley Interscience, New York; Nucleosides as biological probes ibid (1979)

    Google Scholar 

  3. Shen TY (1970) Angew Chem 82: 730; Int Ed Engl 9: 678

    Google Scholar 

  4. Luepke U., Seela (1978) Chem unserer Zeit 12: 189

    Google Scholar 

  5. Badrach U., Schnur LF, El-On J, Greenblatt CL, Pearlman E, Robert-Géro M, Lederer E (1980) FEBS Lett 121: 287

    Google Scholar 

  6. Jiono K, Suzuki S (1968) Tetr Lech 1968: 1133

    Google Scholar 

  7. Schmidt RR, Karg J, Guilliard W (1977) Chem Ber 110: 2433;

    Google Scholar 

  8. Schmidt RR, Heermann D (1981) ibid 114: 2825;

    Google Scholar 

  9. Schmidt RR,Guilliard W,Heermann D (1981) Liebigs Ann Chem;

  10. Schmidt RR, Guilliard W, Heermann D, Hoffmann M (1983) J Heterocycl Chem 20: 1447

    Google Scholar 

  11. Dudycz L, Shugar D, De Clercq E, Descamps J (1977) J Med Chem 20: 1354;

    Google Scholar 

  12. Norang AS, Vince R (1977) ibid 20: 1684

    Google Scholar 

  13. De Clercq E, Eckstein F (1979) Nucleoside, analogues, chemistry, biology and medical applications. In:Walker RT (ed) Nato Advanced Study Institutes Series. Plenum, New York London

    Google Scholar 

  14. Sidwell RE, Huffman JH (1972) Science 177: 705

    Google Scholar 

  15. Shrivastava PC, Revankar GR, Robins RK (1984) J Med Chem 27: 266

    Google Scholar 

  16. Nelson V, El Khadem HS, Whitten BK, Sesselman D (1983) J Med Chem 26: 1071

    Google Scholar 

  17. Seldes AM, Thiel JME, Deferrari JO (1975) Carbohydr Res 39: 47

    Google Scholar 

  18. Baker JJ, Nivan AM, Tittensor JR (1974) Tetrahedron 30: 2939

    Google Scholar 

  19. Poonian MS, Nowoswiat EF, Blount JF, Kramer JM (1976) J Med Chem 19: 1017

    Google Scholar 

  20. Schörkhuber W., Zbiral E (1980) Ann Chem 1980: 1455

    Google Scholar 

  21. Benmann MJ, Lehman JR, Adler J, Zimmermann SB, Simmes ES, Koenberg A (1958) Proc Natl Acad Sci USA 44: 633

    Google Scholar 

  22. Beyermann HC, Bontekoe JS (1962) Rec Trav Chim 81: 690

    Google Scholar 

  23. Wolf H (1946) Org React 3: 307

    Google Scholar 

  24. Robins MJ, MacCoss M (1977) J Amer Chem Soc 99: 4654;

    Google Scholar 

  25. Jung RH, Schmidt RR (1980) Chem Ber 113: 1775

    Google Scholar 

  26. Markiewicz WT, J Chem Res Miniprint 181 (1979);

  27. Robins MJ, Wilson JS (1981) J Amer Chem Soc 103: 932

    Google Scholar 

  28. Ponkiewicz K, Matouda A, Watanabe KA (1982) Org Chem 47: 485

    Google Scholar 

  29. Robins MJ, Wilson JS, Hansske F (1983) J Amer Chem Soc 105: 4059

    Google Scholar 

  30. Ulrich H (1967) Cycloaddition reaction of heterocumulenes. Academic Press, New York

    Google Scholar 

  31. Ulrich H, Tucker B, Sayigh AAR (1972) J Amer Chem Soc 94: 3484

    Google Scholar 

  32. Still WC, Kahu M, Mitra A (1978) J Org Chem 43: 2923

    Google Scholar 

  33. Nelles J (1932) Chem Ber 65: 1345

    Google Scholar 

  34. Wolff H (1946) Org React 3: 307

    Google Scholar 

  35. Henry RA, Finnegan H, Lieber E (1954) J Amer Chem Soc 76: 2894

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Prof. Dr.A. Neckel mit den besten Wünschen zum 60. Geburtstag gewidmet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knotz, H., Zbiral, E. Glykosylazide als Ausgangsbasis zur Gewinnung von Nucleosidanalogen, 3. Mitt. Synthese von Alkylaminotetrazol- und Uretidinonnucleosiden. Monatsh Chem 117, 1437–1460 (1986). https://doi.org/10.1007/BF00810753

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00810753

Keywords

Navigation