Skip to main content
Log in

Kinetics and mechanism of the hydrolysis of sodium carboxymethylcellulose (Na-CMC) by a cellulase complex

Kinetik und Mechanismus der Hydrolyse von Natriumcarboxymethylcellulose (Na-CMC) durch einen Cellulase-Komplex

  • Organische Chemie Und Biochemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Abstract

TheSomogyi-Nelson colorimetric method is applied in a new manner more suitable for evaluating the kinetics of the enzyme hydrolysis of sodium carboxymethylcellulose (Na-CMC) catalyzed by the cellulase complex. By means of selective inhibition of a chosen enzyme from the cellulase complex it became possible to trace the effect of the other enzymes included in its composition.

Zusammenfassung

Die kolorimetrische Methode nachSomogyi undNelson wird nach einem neuen Verfahren zur Verfolgung der Kinetik der hydrolytischen Spaltung von Natriumcarboxymethylcellulose (Na-CMC), katalysiert durch den Cellulase-Komplex, angewandt. Durch selektive Inhibierung eines bestimmten Enzyms des Cellulase-Komplexes kann man die Wirkung der anderen zu seiner gesamten Zusammensetzung gehörenden Enzyme verfolgen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E :

enzyme (E′—cellulase;E″—exo-cellobiohydrolase;E‴—β-glucosidase)

[E] w :

weight concentration of enzymeE

S :

substrate (Na-CMC—sodium carboxymethylcellulose)

[S]0 :

weight concentration of substrateS

I :

inhibitor (I′—lactose;I″—calcium chloride;I″—condurrite-B-epoxide)

P :

product (P′—oligosaccharides;P″—cellobiose;P‴—D-glucose)

P :

end product (K , K , K )

DP :

degree of polymerization

DS :

degree of substitution

ES :

enzyme-substrate complex (E′ S, E″ S, E‴ S)

EP :

enzyme-product complex (E″ P′, E‴ P″)

EI :

enzyme-inhibitor complex (E′ I′, E″ I″, E‴ I‴)

M s :

molecular mass of substrateS

K s :

substrate constant (K s , K s , K s )

K I :

inhibitor constant (K I , K I , K I )

K m :

Michaelis-Menten constant

k +1,k +2 (k +2 ,k +2 ,k +2 ):

forward rate constants

k −1 :

reverse rate constant

ν 0 :

initial rate of reaction

V :

maximal reaction rate

ΔA :

change in absorbance

ε:

molar absorption coefficient

λ:

wavelength

References

  1. Ryu D. D. Y., Mandels M., Enzyme Microbiol. Technol.2, 91 (1980).

    Google Scholar 

  2. Mandels M.,Sternberg D.,Bissett F.,Andreotti P., Ann. Cong. of the South Afr. Soc. for Plant Pathol. and Microbiol., Bloemfontein, Jan. 21–24, p. 1 (1980).

  3. Klyosov A. A., Rabinowitch M. L., in: Enzyme Engineering—Future Directions (Wingard L. B., Berezin I. V., Klyosov A. A., eds.), p. 83. New York: Plenum Press. 1980.

    Google Scholar 

  4. Tsao G. T., Ladish M., Ladish Ch., Hsu T. A., Dale B., Chou T., Ann. Rep. on Ferm. Pross., Vol. 2, p. 1. New York: Academic Press. 1978.

    Google Scholar 

  5. Eriksson K.-E., Biotechnol. Bioeng.20, 317 (1978).

    Google Scholar 

  6. Goughlan M. P., Folan M. A., Int. J. Biochem.10, 103 (1979).

    Google Scholar 

  7. Ghose T. K., Gosh P., J. Appl. Chem. Biotechnol.28, 309 (1978).

    Google Scholar 

  8. Mandels M., Reese E. T., Dev. Ind. Microbiol.5, 5 (1964).

    Google Scholar 

  9. Selby K., Maitland C. C., Biochem. J.104, 716 (1967).

    Google Scholar 

  10. Wood T. M., Biochem. J.109, 217 (1968).

    Google Scholar 

  11. Halliwell G., Riaz M., Arch. Microbiol.78, 295 (1971).

    Google Scholar 

  12. Nisizawa K., J. Ferment. Technol.51, 267 (1973).

    Google Scholar 

  13. Reese E. T., in: Biological Transformation of Wood by Microorganisms (Liese W., ed.), p. 165. Berlin-Heidelberg-New York: Springer. 1975.

    Google Scholar 

  14. Kim Ch., Hwahak Konghak.13, 101 (1975).

    Google Scholar 

  15. Huang A. A., Biotechnol. Bioeng.17, 1421 (1975).

    Google Scholar 

  16. Okazaki M., Moo-Young M., Biotechnol. Bioeng.20, 637 (1978).

    Google Scholar 

  17. Peitersen N., Ross E. W., Biotechnol. Bioeng.21, 997 (1979).

    Google Scholar 

  18. Lee Y.-H., Fan L. T., Fan L.-Sh., in: Adv. in Biochem. Eng. (Fiechter A., ed.), Vol. 17, p. 132. Berlin-Heidelberg-New York: Springer. 1980.

    Google Scholar 

  19. Enebo L., Thesis, University of Stockholm. 1954.

  20. Tschetkarov M., Koleff D., Monatsh. Chem.100, 1201 (1969).

    Google Scholar 

  21. Genin M. S., Momot N. N., Galinkin W. A., Biohimija.43, 170 (1978).

    Google Scholar 

  22. Legler G., Z. Physiol. Chem.349, 767 (1968).

    Google Scholar 

  23. Chetkarov M. L., Hatour F. D., Kolev D. N., Monatsh. Chem.115, 1321 (1984).

    Google Scholar 

  24. Matthias W., Naturwiss.41, 17 (1954).

    Google Scholar 

  25. Partridge S. M., Nature164, 443 (1949).

    Google Scholar 

  26. Wood T. M., McCrae S. I., Biochem. J.171, 61 (1978).

    Google Scholar 

  27. Umezurike G. M., Biochem. J.177, 9 (1979).

    Google Scholar 

  28. Lineweaver H., Burk D., J. Amer. Chem. Soc.56, 658 (1934).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Prof. Dr.Hans Tuppy zum 60. Geburtstag herzlichst gewidmet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chetkarov, M.L., Hatour, F.D. & Kolev, D.N. Kinetics and mechanism of the hydrolysis of sodium carboxymethylcellulose (Na-CMC) by a cellulase complex. Monatsh Chem 116, 1433–1445 (1985). https://doi.org/10.1007/BF00810483

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00810483

Keywords

Navigation