Skip to main content
Log in

Plasma membrane dehydrogenases in rat brain synaptic membranes. Multiplicity and subunit composition

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Plasma membrane redox enzymes have been investigated in synaptic membranes from rat brain nerve terminals. UV-Vis spectra of intact synaptic plasma membranes are presented and the presence of ab-type cytochrome, detectable at 77°K and sensitive to NADH or NADPH, is shown. The molecular characterization of rat synaptic NADH-dehydrogenases was further performed on solubilized enzymes using a recently developed nondissociating polyacrylamide gel electrophoresis technique. Synaptic plasma membranes were solubilized with 1% sodium cholate or Triton X-114 and centrifuged. The supernatant retained over 60% of the NADH-dehydrogenase activity, tested with either DCIP or ferricyanide as substrates, together with NADH. Both enzyme activities were insensitive toward rotenone. This extraction procedure also solubilized about 50% of the proteins. When submitted to polyacrylamide gel electrophoresis under nondenaturing conditions and stained for NADH-dehydrogenase activity, five bands of different mobilities were detected. The multiple NADH-dehydrogenases of synaptic plasma membranes were investigated by means of band excision and the five excised bands each submitted to amino acid analysis and to 2-D electrophoresis. The subunit composition of each band was then deduced, together with the molecular weight and pI of each respective subunit. NADH-dehydrogenases have also been purified by means of FPLC on Mono-P (chromatofocusing) followed by gel filtration on Superose 12. NADH-Dehydrogenase IV and V could be purified in their active forms by this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCIP:

dichlorophenol-indophenol

FPLC:

fast protein liquid chromatography.

References

  • Capaldi, R. A., Sweetland, J., and Merli, A. (1977).Biochemistry 16, 5707–5718.

    Google Scholar 

  • Cotman, C. W., and Mattews, D. A. (1971).Biochim. Biophys. Acta 249, 380–394.

    Google Scholar 

  • Cotman, C. W., Herschman, H., and Taylor, D. (1971).J. Neurobiol. 2, 169–178.

    Google Scholar 

  • Crane, F. L. and Loew, H. (1976).FEBS Lett. 68, 153–156.

    Google Scholar 

  • Crane, F. L., Löw, H., Sun. I. L., Navas, P., and Morré, D. J. (1988). InRedox Functions of the Eukaryotic Plasma Membrane (Ramirez, J. M., ed.), CSIC Press, Madrid, pp. 1–17.

    Google Scholar 

  • Dallner, G., Siekevitz, P., and Palade, G. E. (1966).J. Cell. Biol. 30, 97–105.

    Google Scholar 

  • DasGupta, V., and Rieske, J. S. (1973).Biochem. Biophys. Res. Commun. 54, 1247–1248.

    Google Scholar 

  • Dreyer, J. L., Treichler, T., Gueggi, F., and Buillard, C (1989). InOxidoreductase at the Plasma Membrane: Relation to Growth and Transport (Crane, F., ed). CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Duncan, H. M., and Mackler, B. (1966).J. Biol. Chem. 241, 1694–1699.

    Google Scholar 

  • Ellmann, G. L. (1961).Biochem. Pharmacol. 7, 88–96.

    Google Scholar 

  • Emmelot, P., Benedetti, E. L., and Rümke, P. (1964).Biochim. Biophys. Acta 90, 126–145.

    Google Scholar 

  • Goldenberg, H., Crane, F. L., and Morré, D. J. (1979).J. Biol. Chem. 249, 2491–2498.

    Google Scholar 

  • Görg, A., Postel, W., Günther, S., and Friedrich, C. (1988).Electrophoresis 9, 57–59.

    Google Scholar 

  • Hatefi, Y. (1985).Annu. Rev. Biochem. 54, 1015–1069.

    Google Scholar 

  • Hatefi, Y., Galante, Y. M., Stiggall, D. L., and Ragan, C. I. (1979).Methods Enzymol. 56, 577–602.

    Google Scholar 

  • Kuonen, D. R., Roberts, P. J., and Cottingham, I. R. (1986).Anal. Biochem. 153, 221–226.

    Google Scholar 

  • Lopez-Perez, M. J., Paris, G., and Larsson, C. (1981).Biochim. Biophys. Acta 635, 359–368.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A., and Randall, R. (1951).J. Biol. Chem. 193, 265–275.

    Google Scholar 

  • Lowry, O. H., Roberts, N. R., Wir, M., Hixon, W. S., and Crawford, W. (1954).J. Biol. Chem. 207, 19–28.

    Google Scholar 

  • Mersel, M., Malviya, A. N., Hindelang, C., and Mandel, P. (1984).Biochim. Biophys. Acta 778, 144–154.

    Google Scholar 

  • Mersel, M., Vitkovic, L., Vincendon, G., and Malviya, A. N. (1988). InPlasma Membrane Oxidoreductases in Control of Animal and Plant Growth (Crane, F. L., Morré, D. J., and Löw, H. eds), Plenum Press, New York, p. 402.

    Google Scholar 

  • O'Farell, P. H. (1975).J. Biol. Chem. 250, 4007–4021.

    Google Scholar 

  • Sammons, D. W., Adams, L. D., and Nishizawa, E. E. (1981).Electrophoresis 2, 135–141.

    Google Scholar 

  • Sellinger, O. Z., Beaufay, H., Jacques, P., Dayler, A., and DeDuve, C. (1960).Biochem. J. 74, 450–465.

    Google Scholar 

  • Singer, T., and Gutman, M. (1971).Adv. Enzymol. 34, 79–86.

    Google Scholar 

  • Treichler, T., and Dreyer, J. L. (1986).Biol. Chem. Hoppe-Seyler 367, 298.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dreyer, J.L. Plasma membrane dehydrogenases in rat brain synaptic membranes. Multiplicity and subunit composition. J Bioenerg Biomembr 22, 619–633 (1990). https://doi.org/10.1007/BF00809067

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00809067

Key Words

Navigation