Skip to main content
Log in

Amorphous aluminosilicates containing trivalent chromium in a non-octahedral coordination environment

Amorphe Alumosilicate mit dreiwertigem chrom in nicht-oktaedrischer Koordinationsumgebung

  • Anorganische Und Physikalische Chemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Abstract

Amorphous aluminosilicates containing up to 5.8 wt.% chromium have been prepared by cation exchange on an amorphous sodium aluminosilicate using Cr(III) salts. Electronic spectroscopy has shown that the ligand arrangement around the Cr(III) sites does not correspond to the octahedral geometry. No isomorphous substitution of Al3+ by Cr3+ in the aluminosilicate occurs, and it is not possible to exchange back chromium by Na+ ions. The amorphous chromium-substituted aluminosilicates (abbr. ACSAS) are slightly acidic and when heated in air at 800 °C no oxidation of Cr(III) takes place. The chromium species in the ACSAS undergoes ligand replacement reactions.

Zusammenfassung

Bis zu 5,8 Gew.% Chrom enthaltende amorphe Alumosilicate wurden durch Kationenaustausch am amorphen Natriumalumosilicat unter Anwendung von Cr(III)-Salzen hergestellt. Elektronenspektroskopische Untersuchungen zeigten, daß die Ligandanordnung um die Cr(III)-Lagen nicht der oktaedrischen Geometrie entspricht. Im Alumosilicat erfolgt keine isomorphe Substitution von Al3+ durch Cr3+ und es ist nicht möglich, Chrom durch Na+ zurückzuersetzen. Die amorphen durch Chrom ersetzten Alumosilicate (abgekürzt ACSAS) sind schwach sauer und wenn sie in der Luft auf 800 °C aufgeheizt werden, erfolgt keine Oxydation von Cr(III). Das in den ACSAS vorliegende Chrom unterliegt Ligandaustauschreaktionen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pearce J. R., Sherwood D. E., Hall M. B., Lunsford J. H., J. Phys. Chem.84, 3215 (1980).

    Google Scholar 

  2. Naccache C., Taarit Y., J. Chem. Soc., Faraday Trans.I 69, 1475 (1973).

    Google Scholar 

  3. Rubinstejn A. M., Slinkin A. A., Loktev M. I., Fedorovskaya E. A., Bremer H., Vogt F., Z. anorg. allg. Chem.423, 164 (1976).

    Google Scholar 

  4. Kugler E. L., Kadet A. B., Gryder J. W., J. Catal.41, 72 (1976).

    Google Scholar 

  5. Garwood W. E., Lucki S. J., Chen N. Y., Bailar J. C., Inorg. Chem.17, 610 (1978).

    Google Scholar 

  6. Reinwald E.,Schwuger M. J.,Smolka H., US-Pat. 4126574 (1977).

  7. Schwuger M. J., Smolka H. G., Colloid Polym. Sci.254, 1062 (1976).

    Google Scholar 

  8. Smolka H.,Schwuger M. J., D.O.S. 2412838 (1974).

  9. Murata M.,Sai F.,Fujino T., D.O.S. 2754835 (1976).

  10. Breck D. W., Zeolite Molecular Sieves, Ch. 1. New York: J. Wiley. 1974.

    Google Scholar 

  11. Stojakovic D., Diss. Abstr. Int. B38, 5930 (1978).

    Google Scholar 

  12. Surles T.,Erickson J. O.,Priesner D., International Laboratory, May/June 1975, p. 29.

  13. Childers R. F., Vander Zyl K. G., House D. A., Hughes R. G., Garner C. S., Inorg. Chem.7, 749 (1968).

    Google Scholar 

  14. Gordon A. J., Ford R. A., The Chemist's Companion, p. 213. New York: J. Wiley. 1972.

    Google Scholar 

  15. Kerr G. T., J. Phys. Chem.72, 2594 (1968).

    Google Scholar 

  16. Ref., Ch. 6.

    Google Scholar 

  17. Riley P. E., Seff K., J. Phys. Chem.79, 1594 (1975).

    Google Scholar 

  18. König E., Inorg. Chem.10, 2632 (1971).

    Google Scholar 

  19. Huheey J., Inorganic Chemistry, 2nd ed., p. 418. New York: Harper and Row. 1978.

    Google Scholar 

  20. Gmelins Handbuch der Anorganischen Chemie, 8 Aufl., Chrom, Teil C, System-Nummer 52. Weinheim: Verlag Chemie. 1962.

    Google Scholar 

  21. Vasović D., Stojaković Dj., Radosavljević S., Bull. Soc. Chim. Beograd47, 605 (1982).

    Google Scholar 

  22. Ballhausen C. J., Ligand Field Theory, Ch. 10. New York: McGraw-Hill. 1962.

    Google Scholar 

  23. Schläfer H. L., Glieman G., Ligand Field Theory, Part B, Ch. 3. New York: Wiley-Interscience. 1969.

    Google Scholar 

  24. Englis D. T., Wollerman L. A., Anal. Chem.24, 1983 (1952).

    Google Scholar 

  25. Laswick J. A., Plane R. A., J. Amer. Chem. Soc.81, 3564 (1959).

    Google Scholar 

  26. Yager T. D., Eaton G. R., J. Chem. Educ.56, 635 (1979).

    Google Scholar 

  27. Andrews L. J., Lempicki A., McCollum B. C., J. Chem. Phys.74, 5526 (1981).

    Google Scholar 

  28. Nakamoto K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed., Ch. III-5. New York: J. Wiley. 1978.

    Google Scholar 

  29. Alyea E. C.,Basi J. S.,Bradley D. C.,Chisholm M. H., Chem. Commun.1968, 495.

  30. Brown D. H., J. Chem. Soc.1962, 3322.

  31. Mowat W.,Shortland A.,Yagupsky G.,Hill N. J.,Yagupsky M.,Wilkinson G., J. Chem. Soc. D1972, 533.

  32. Cotton F. A., Wilkinson G., Advanced Inorganic Chemistry, 4th ed., p. 727. New York: J. Wiley. 1980.

    Google Scholar 

  33. Ref., Ch. 2.

    Google Scholar 

  34. Yanagida R. Y., Vance T. B., Seff K., Inorg. Chem.13, 723 (1974).

    Google Scholar 

  35. Seff K., Acc. Chem. Res.9, 121 (1976).

    Google Scholar 

  36. Ref., p. 71.

    Google Scholar 

  37. Ref., p. 734.

    Google Scholar 

  38. Ref., p. 493.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stojaković, D., Vasović, D. Amorphous aluminosilicates containing trivalent chromium in a non-octahedral coordination environment. Monatsh Chem 116, 581–589 (1985). https://doi.org/10.1007/BF00798782

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00798782

Keywords

Navigation