Skip to main content
Log in

Role of endoperoxides of the prostaglandins in platelet aggegation

  • Physiology
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Abstract

Phospholipase A and lysolecithin stimulate the reaction of liberation of thromboplastic factor and aggregation of erythrocytes and platelets. Polarographic investigations have shown that these aggregating agents cause absorption of O2 in medium containing platelets, possible evidence of the formation of these conditions of intermediate products of prostaglandin synthesis, namely endoperoxides. Albumin does not prevent the liberation reaction and the absorption of O2 caused by phospholipase and lysolecithin but it completely inhibits their aggregating action. Aspirin, on the other hand, blocks O2 consumption by platelets althoug its action on the aggregating effect of lysolecithin is only very slight. It is suggested that the aggregation of the blood cells is connected with perturbation of the lipid-protein structure of their membranes and not with endoperoxide synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. E. A. Kovalenko, V. A. Berezovskii, and I. M. Épshtein, Polarographic Determination of Oxygen in vivo [in Russian], Moscow (1975).

  2. G. Ya. Levin and Yu. A. Sheremet'ev, Byull. Éksp. Biol. Med., No. 12, 1411 (1976).

    Google Scholar 

  3. T. A. Odesskaya, Probl. Gematol., No. 2, 37 (1976).

    Google Scholar 

  4. Q. F. Ahkong, D. Fisher, W. Tampion, et al., Nature (London),253, 194 (1975).

    Google Scholar 

  5. S. H. Ferreira and J. R. Vane, in: Prostaglandins, Vol. 2, New York, (1974).

  6. R. Glaser and A. Leitmannova, Stud. Biophys.,48, 219 (1975).

    Google Scholar 

  7. M. A. Lichtman, G. V. Marinetti, and S. E. Gordesky, Nouv. Rev. Franc. Hémat.,14, 5 (1974).

    Google Scholar 

  8. C. Malmsten, M. Hamberg, J. Svensson, et al., Proc. Nat. Acad. Sci. USA,72, 1446 (1975).

    Google Scholar 

  9. J. Muenzer, E. C. Weinbach, and S. M. Wolfe, Biochim. Biophys. Acta,376, 237 (1975).

    Google Scholar 

  10. T. Sato and T. Fujti, Chem. Pharm. Bull.,22, 152 (1974).

    Google Scholar 

  11. A. W. Sedar, M. J. Silver, J. B. Smith, et al., Blood,44, 177 (1974).

    Google Scholar 

  12. J. B. Smith, C. Ingerman, J. J. Kocsis, et al., J. Clin. Invest.,52, 565 (1973).

    Google Scholar 

  13. V. Speth, D. F. H. Wallach, E. Weidekamm, et al., Biochim. Biophys. Acta,255, 386 (1972).

    Google Scholar 

  14. S. B. Ulutin, T. E. Yazamangi, and O. N. Ulutin, Acta Univ. Carol. Ser. Med.,53–54, 237 (1972).

    Google Scholar 

  15. H. J. Weiss, New Engl. J. Med.,293, 531 (1975).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levin, G.Y., Sheremet'ev, Y.A. & Petrov, S.V. Role of endoperoxides of the prostaglandins in platelet aggegation. Bull Exp Biol Med 84, 932–935 (1977). https://doi.org/10.1007/BF00798508

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00798508

Key Words

Navigation