Skip to main content
Log in

Effect of plastic deformation on some properties of niobium monocarbide in its homogeneity range

  • Published:
Soviet Powder Metallurgy and Metal Ceramics Aims and scope

Conclusions

  1. 1.

    Polycrystalline niobium monocarbide specimens exhibit pronounced strain strengthening during plastic deformation above their tough-to-brittle transition temperature, which becomes more marked with increase in the amount of carbon vacancies in the niobium monocarbide lattice. This is accompanied by an increase in point defect concentration, as a result of which the electrical resistivity of the carbide grows.

  2. 2.

    At any given deformation rate, the absolute increase in the electrical resistivity and thermo-emf of niobium monocarbide specimens is a maximum at x=0.81–0.84. The reason for this is that these compositions, which correspond to the maximum statistical weight of the stable sp3(s2p3) type electronic configurations, are the most sensitive to a change in the Fermi surface brought about by plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. L. E. Toth, Transition Metal Carbides and Nitrides, Academic Press, New York-London (1971), p. 152.

    Google Scholar 

  2. I. V. Gridneva, I. V. Milman, and V. I. Trefilov, Phys. Status Solidi,36, 59 (1969).

    Google Scholar 

  3. D. L. Harrod and L. R. Fleischer, in: Anisotropy in Single-Crystal Refractory Compounds (edited by F. W. Vahldiek and S. A. Mersol), Vol. 1, Plenum Press, New York (1968), p. 341.

    Google Scholar 

  4. R. A. Andrievskii et al., Dokl. Akad. Nauk SSSR,185, 792 (1969).

    Google Scholar 

  5. G. Hollox, D. Novak, and R. Huntington, Trans. Am. Soc. Metals,3, 1192 (1970).

    Google Scholar 

  6. A. I. Avgustinik, S. M. Kats, et al., Izv. Akad. Nauk SSSR, Neorgan. Mat.,8, No. 8, 1417 (1972).

    Google Scholar 

  7. R. A. Andrievskii, I. I. Spivak, and V. V. Klimenko, Dokl. Akad. Nauk SSSR,203, 1279 (1972).

    Google Scholar 

  8. A. Seeger, J. Phys. Chem. Solids,4, 3 (1958).

    Google Scholar 

  9. S. D. Gertsriken, M. M. Novikov, and V. S. Kopan', Ukr. Fiz. Zh.,4, 3 (1959).

    Google Scholar 

  10. A. A. Adamenko, I. Ya. Dekhtyar, and V. S. Mikhalenkov, in: Electronic Properties of Metals and Alloys [in Russian], Naukova Dumka, Kiev (1966), p. 72.

    Google Scholar 

  11. A. Kelly and D. Rowcliffe, J. Am. Ceram. Soc.,50, 253 (1967).

    Google Scholar 

  12. L. Ramqvist, Jernkontorets Ann.,152, 465 (1968).

    Google Scholar 

  13. S. S. Ordan'yan and G. V. Drozdetskaya, Poroshkovaya Met., No. 8 (1970).

  14. V. N. Fishchev and S. S. Ordan'yan, Brief Communications to a Scientific-Technical Conference of the Lensovet Leningrad Technological Institute [in Russian], Leningrad (1971), p. 46.

  15. G. V. Samsonov, I. F. Pryadko, and L. F. Pryadko, A Configurational Model of Matter [in Russian], Naukova Dumka, Kiev (1971).

    Google Scholar 

  16. A. H. Cottrell and R. Stokes, Proc. Roy. Soc.,A233, 17 (1955).

    Google Scholar 

  17. G. N. Épshtein, Dokl. Akad. Nauk SSSR,203, 1293 (1972).

    Google Scholar 

  18. S. S. Ordan'yan, L. V. Kudryasheva, and A. I. Avgustinik, Izv. Akad. Nauk SSSR, Neorgan. Mat., No. 7, 2179 (1971).

    Google Scholar 

  19. R. Hill, Mathematical Theory of Plasticity [Russian translation], Gostekhizdat, Moscow (1958).

    Google Scholar 

  20. J. Gilman, J. Appl. Phys.,41, 1664 (1970).

    Google Scholar 

  21. P. V. Gel'd and V. I. Tskhai, Tr. Inst. Khim., Ural'sk. Filial Akad. Nauk SSSR, No. 9, 3 (1966).

    Google Scholar 

  22. V. R. Honnin, D. Konlstedt, and M. Murray, Proc. Roy. Soc.,A326, 409 (1972).

    Google Scholar 

  23. V. S. Neshpor, in: Metals Science [in Russian], Nauka, Moscow (1971), p. 133.

    Google Scholar 

  24. V. G. Zubkov, L. B. Dubrovskaya, et al., Fiz. Metal. i Metalloved.,27, 352 (1969).

    Google Scholar 

  25. F. Blatt, F. Hamand, and I. Kochler, Bull. Am. Phys. Soc.,1, 115 (1956).

    Google Scholar 

  26. H. G. Van Bueren, in: Imperfections in Crystals, Amsterdam (1960), p. 153.

  27. V. S. Neshpor, V. P. Nikitin, and V. V. Rabotnov, Poroshkovaya Met., No. 11 (1968).

  28. A. I. Avgustinik et al., Izv. Akad. Nauk SSSR, Neorgan. Mat.,3, 286 (1967).

    Google Scholar 

  29. F. Blatt, Phys. Rev.,100, 2 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Poroshkovaya Metallurgiya, No. 7 (139), pp. 51–57, July, 1974.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bychkov, A.K., Neshpor, V.S. & Ordan'yan, S.S. Effect of plastic deformation on some properties of niobium monocarbide in its homogeneity range. Powder Metall Met Ceram 13, 560–565 (1974). https://doi.org/10.1007/BF00792563

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00792563

Keywords

Navigation