Skip to main content
Log in

Nuclear matrix bound terminal deoxynucleotidyl transferase in rat thymus nuclei. I. A possible site for TdT mediated function

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Approximately 80% of the terminal deoxynucleotidyl transferase (TdT) in thymus glands from 3–4 week old rats was found to be localized in the nucleus and the remaining 20% in the cytosol. Following endogenous nuclease digestion of the thymus nuclei, 70–85% of the nuclear TdT could be removed by low salt and high salt extractions, whereas 15–30% of the enzyme remained tightly bound to the residual nuclear matrix. Low salt and high salt extracts of the nuclei contained a mixture of 58, 56, 45 and 44 kDa species of TdT whereas only 58 kDa species of the enzyme was found to be associated with the matrix. In addition to TdT, 20–25% of the nuclear DNA polymerase α was also tightly bound to the isolated nuclear matrix. These observations lead us to propose that besides being the site of DNA replicationvia-matrix bound replicational complexes [Van der Velden H.M.W. & Wanka F., Molecular Biology Reports 12 (1987): 69], nuclear matrix may also be the site of TdT mediated function and that matrix bound TdT and free TdT could be the functional and nonfunctional forms of the enzyme, respectively, in the thymus gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

dNTP:

deoxyribonucleoside triphosphate

DTT:

dithiothreitol

Ig:

immunoglobulin

PMSF:

phenylmethylsulfonylfluoride

rNTP:

ribonucleoside triphosphate

SDS:

sodium dodecyl sulphate

TCR:

T cell receptor

TdT:

terminal deoxynucleotidyl transferase

VDJ:

variable, diversity and joining segments of Ig or TCR genes

References

  1. Berezney R & Coffey DS (1974) Biochem. Biophys. Res. Commun. 60: 1410–1417

    Google Scholar 

  2. Berezney R & Coffey DS (1976) Adv. Enzyme Regul. 14: 63–100

    Google Scholar 

  3. Lewis CD, Lebcowski JS, Daly AK & Laemmli UK (1984) J. Cell. Sci. Suppl. 1: 103–122

    Google Scholar 

  4. Van der Velden HMW & Wanka F (1987) Molecular Biol. Reports 12: 69–77

    Google Scholar 

  5. Tubo RA & Berezney R (1987) J. Biol. Chem. 262: 5857–5885

    Google Scholar 

  6. Smith HC & Berezney R (1982) Biochemistry 21: 6751–6761

    Google Scholar 

  7. Foster KA & Collins JM (1985) J. Biol. Chem. 260: 4229–4235

    Google Scholar 

  8. Tubo RA, Smith HC & Berezney R (1985) Biochim. Biophys. Acta. 825: 326–334

    Google Scholar 

  9. Bollum FJ (1974) In: Boyer PD (Ed) The Enzyme. Vol. 10, pp 145–171 Academic Press, NY

    Google Scholar 

  10. Alt FW, Blackwell TK & Yancopoulos GD (1987) Science 238: 1079–1087

    Google Scholar 

  11. Landau N, Schatz DG, Rosa M & Baltimore D (1987) Mol. Cell. Biol. 7: 3237

    Google Scholar 

  12. Desiderio S, Yancopoulos G, Paskind M, Thomas E, Boss M, Landau N, Alt FW & Baltimore D (1984) Nature 311: 752–755

    Google Scholar 

  13. Yancopoulos GD & Alt FW (1985) Cell 40: 271–281

    Google Scholar 

  14. Alt FW & Baltimore D (1982) Proc. Natl. Acad. Sci. (USA) 79: 4118–4122

    Google Scholar 

  15. Gregoise KE, Goldschneider I, Barton RW & Bollum FJ (1977) Proc. Natl. Acad. Sci. (USA) 74: 3993–3996

    Google Scholar 

  16. Deibel MR Jr., Riley LK & Colman MS (1983) In: Rattazzi MC, scandalios JG & Whill GS (Eds) Current Topics in Biol. and Medical Research, Vol. 7, pp 297. Alan, R. Liss, New York

    Google Scholar 

  17. Chang LMS, Rafter E, Augl C & Bollum FJ (1984) J. Biol. Chem. 259: 14679–14687

    Google Scholar 

  18. Pandey VN & Modak MJ (1987) Prep. Biochem. 17: 359–377

    Google Scholar 

  19. Pandey VN & Modak MJ (1988) J. Biol. Chem. 263: 3744–3751

    Google Scholar 

  20. Pandey VN & Modak MJ (1988) J. Biol. Chem. (in press)

  21. Wolf SC, Kourides IA, Good RA & Silverstone AE, (1982) J. Biol. Chem. 257: 4013–4015

    Google Scholar 

  22. Ikegami S, Taguchi T, Ohashi M, Oguro M, Naga H & Mano Y (1978) Nature (London) 275: 458–464

    Google Scholar 

  23. Peterson RC, Cheung LC, Mattaliano RJ, White SJ, Chang LMS & Bollum FJ (1985) J. Biol. Chem. 260: 10495–10502

    Google Scholar 

  24. Kalderon D, Roberts BL, Richardson WD & Smith AE (1984) Cell 39: 499–509

    Google Scholar 

  25. Koiwai O, Yokota T, Kageyama T, Hirose T, Yoshida S & Arai K (1986) Nucleic Acid Res. 14: 5777–5792

    Google Scholar 

  26. Dave VP, Patil MS & Pandey VN (1989) Molecular Biol. Reports (1989) 13: 00-00

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, V.N., Dave, V.P. & Patil, M.S. Nuclear matrix bound terminal deoxynucleotidyl transferase in rat thymus nuclei. I. A possible site for TdT mediated function. Mol Biol Rep 13, 179–184 (1988). https://doi.org/10.1007/BF00788168

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00788168

Key words

Navigation