Skip to main content
Log in

Spatial organization of histones and DNA in the nucleosome core particle: A model

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We present here an attempt to build up a space-filling model of the nucleosome core particle based on the chemical crosslinking data of Mirzabekov and coworkers (23). It is shown that the models proposed earlier are inconsistent with the results of these authors. The main characteristics of our model are as follows: a) the DNA superhelix contains at least 90 base pairs (bp) per turn; b) the particle has a dyad axis of symmetry; c) the histone octamer may be regarded as consisting of two heterotypic tetramers. The possible shape and function of core histones are discussed in the light of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BakaevV.V., T.G.Bakaeva & A.J.Varshavsky. Cell 1: 619–629 (1977).

    Google Scholar 

  2. BakaevaT.G., A.P.Zhuze & V.V.Bakaev. Dokl. Acad. Nauk USSR 240: 737–740 (1978).

    Google Scholar 

  3. BaldwinJ.B., P.G.Boseley, E.M.Bradbury & K.Ibel. Nature 253: 245–249 (1975).

    Google Scholar 

  4. Camerini-OteroR.D. & G.Felsenfeld. Nucleic Acids Res. 4: 1159–1181 (1977).

    Google Scholar 

  5. Camerini-OteroR.D. & G.Felsenfeld. Proc. Natl. Acad. Sci. USA 75: 5519–5522 (1977).

    Google Scholar 

  6. Camerini-OteroR.D., B.Sollner-Webb & G.Felsenfeld. Cell 8: 333–347 (1976).

    Google Scholar 

  7. CrothersD.M., N.Dattagupta, M.Hogan, L.Klevan & K.S.Lee. Biochemistry 17: 4525–4533 (1978).

    Google Scholar 

  8. CrothersD.M., N.Dattagupta, M.Hogan, L.Klevan & K.S.Lee. Biochemistry 17: 4525–4533 (1978).

    Google Scholar 

  9. CrickF.H.C. & A.Klug. Nature 255: 530–533 (1975).

    Google Scholar 

  10. DubochetJ. & M.Noll. Science 202: 260–286 (1978).

    Google Scholar 

  11. EichbushT.N. & E.L.Moudrianakis. Biochemistry 17: 4955–4964 (1978).

    Google Scholar 

  12. FinchJ.T., L.C.Lutter, D.Rhodes, R.S.Brown, B.Rushton, M.Levitt & A.Klug. Nature 269: 29–36 (1977).

    Google Scholar 

  13. FelsenfeldG. Nature 271: 115–122 (1978).

    Google Scholar 

  14. GermondJ.E., B.Hirt, P.Oudet, M.Gross-Bellord & P.Chambon. Proc. Natl. Acad. Sci. USA 72: 1843–1847 (1975).

    Google Scholar 

  15. GlotovB.O., A.V.Itkes, L.G.Nikolaev & E.S.Severin. FEBS Lett. 91: 149–152 (1978).

    Google Scholar 

  16. GriffithJ.D. Science 201: 525–527 (1978).

    Google Scholar 

  17. JorcanoJ.L. & A.Ruiz-Carrillo. Biochemistry 18: 768–774 (1979).

    Google Scholar 

  18. KornbergR.D. Ann. Rev. Biochem. 46: 931–954 (1977).

    Google Scholar 

  19. KornbergR.D. & J.O.Thomas. Science 184: 865–868 (1974).

    Google Scholar 

  20. LutterL.C. J. Mol. Biol. 124: 391–420 (1978).

    Google Scholar 

  21. LutterL.C. Nucleic Acids Res. 6: 41–56 (1979).

    Google Scholar 

  22. MirzabekovA.D., D.F.San'ko, A.M.Kolchinsky & A.F.Melnikova. Eur. J. Biochem. 75: 379–389 (1977).

    Google Scholar 

  23. MirzabekovA.D., V.V.Shick, A.V.Belyavsky & S.G.Bavykin. Proc. Natl. Acad. Sci. USA 75: 4184–4188 (1978).

    Google Scholar 

  24. OudetP., C.Spadafora & P.Chambon. Cold Spring Harb. Symp. Quant. Biol. 42: 301–312 (1978).

    Google Scholar 

  25. PardonJ.F., D.L.Worcester, J.C.Wooley, R.I.Cotter, D.M.J.Lilley & B.M.Richards. Nucleic Acids Res., 4, 3199–3214 (1977).

    Google Scholar 

  26. PospelovV.A., S.B.Svetlikova & V.I.Vorob'ev. FEBS Lett. 99: 123–128 (1979).

    Google Scholar 

  27. PospelovV.A., S.B.Svetlikova & V.I.Vorob'ev. Nucl. Acids Res. 6: 399–418 (1979).

    Google Scholar 

  28. SimpsonR.T. Nucleic Acids Res. 5: 1109–1119 (1978).

    Google Scholar 

  29. SimpsonR.T. & J.P.WhitlockJr. Cell 9: 347–353 (1976).

    Google Scholar 

  30. SobellH.M., C.C.Tsai, S.G.Gilbert, S.C.Jain & T.D.Sakore. Proc. Natl. Acad. Sci. USA 73: 3068–3072 (1976).

    Google Scholar 

  31. Sollner-WebbB., R.D.Camerini-Otero & G.Felsenfeld. Cell 9: 179–193 (1977).

    Google Scholar 

  32. Sollner-WebbB., W.MelchiorJr. & G.Felsenfeld. Cell 14: 611–627 (1978).

    Google Scholar 

  33. SussmanJ.L. & E.N.Trifonov. Proc. Natl. Acad. Sci. USA 75: 103–107 (1978).

    Google Scholar 

  34. TrifonovE.N. Nucleic Acids Res. 5: 1371–1380 (1978).

    Google Scholar 

  35. WeintraubH., A.Worcel & B.Alberts. Cell 9: 409–417 (1976).

    Google Scholar 

  36. WeischetW.O., J.R.Allen, G.Riendel & K.E.VanHolde. Nucleic Acids Res. 6: 1843–1862 (1979).

    Google Scholar 

  37. WorcelA. Cold Spring Harbor Symp. Quant. Biol. 42: 313–324 (1978).

    Google Scholar 

  38. ZimmermanS.B. & B.H.Pheiffer. Proc. Natl. Acad. Sci. USA 76: 2703–2707 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khachatrian, H.T., Pospelov, V.A. Spatial organization of histones and DNA in the nucleosome core particle: A model. Mol Biol Rep 6, 219–223 (1980). https://doi.org/10.1007/BF00777528

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00777528

Keywords

Navigation