Skip to main content
Log in

Determination of the primary sequence of the duck αD globin mRNA and comparison of all adult duck and chick globin mRNA sequences

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The nucleotide sequence of the duck αD globin mRNA was determined. Its main feature is an exceptionally short 3′ non-coding segment of only 46 nucleotides, placed after the coding sequence of 141 codons. The last of the 6 adult globin mRNA of duck and chicken being thus sequenced, a comparison of all their features has become possible. Comparing the duck αD mRNA to the related sequence in the chicken, we found greater homology than comparing it to the linked αA globin sequence in the same species. Extensive homology can be found for a same globin chain αA, αD or β in between different avian species including also the goose and the ostrich; the avian α globin chains show a lower degree of sequence conservation in between species than the β chains. In contrast, within one species the three globin sequences have further diverged. The divergence between the αA and αD globin within a same species point to individual functional specificity and hence independent evolution and suggest that a mechanism of ‘gene conversion’ did not operate in between the avian α globin genes. Two segments of the amino acid sequence which we named ‘Aα’ and ‘Bα’ remain homologous in all avian α globins; two other regions ‘Aβ’ and ‘Bβ’ are identical in between the β globins. Segment A is placed at the 5′ end of exon II, and segment B at the 3′ end of the same exon; some amino acids in those segments are involved in the Heme binding site. Being almost identical in all know mammalian and avian globins of the α respectively the β type, regions A and B seem to represent the best conserved sequences in adult globin mRNA maintained during the divergence of species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ScherrerK., Imaizumi-ScherrerM-T., ReynaudC-A. & TherwathA., 1979. Mol. Biol. Rep. 5: 1–2, 5–28.

    Google Scholar 

  2. VincentA., GoldenbergS., StandartN., CivelliO., Imaizumi-ScherrerM-T., MaundrellK. & ScherrerK., 1981. Mol. Biol. Rep. 7: 71–81.

    Google Scholar 

  3. ScherrerK., 1980. Eukaryotic gene regulation (KolodnyG., ed.) C.R.C. Press, Florida, 57–129.

    Google Scholar 

  4. TherwathA., SorianoPh. & ScherrerK., 1980. Biochem. Int. 1: 32–40.

    Google Scholar 

  5. ReynaudC-A, Ben TaharS., KrustA., Amaral de Lima FrancoM-P., GoldenbergS, GannonF. & ScherrerK., 1980. Gene 11: 259–269.

    Google Scholar 

  6. Beaupain, D., Amaral de Lima Franco, M-P., Therwath, A. & Scherrer, K., 1982. 5th Arolla Worshop, Arolla Aug. 30 Sept. 3.

  7. Beaupain, D., Amaral de Lima Franco, M-P., Therwath, A. & Scherrer, K., 1983. Mol. Biol. Rep. (submitted).

  8. GoldenbergS. & ScherrerK., 1981. FEBS Lett. 133: 213–216.

    Google Scholar 

  9. RichardsR. I., ShineJ., UllrichA., WellsJ. R. E. & GoodmanH. M., 1979. Nucl. Acids Res. 7: 1137–1146.

    Google Scholar 

  10. DodgsonJ. B., Mc CuneC., RuslingD. J. KrustA. & EngelJ. D., 1981. Proc. Natl. Acad. Sci. USA 78: 5998–6002.

    Google Scholar 

  11. Dodgson, J. B., Engel, J. D., 1983 (in press).

  12. HampeA., TherwathA., SorianoP. & GabilertF., 1981. Gene 14: 11–21.

    Google Scholar 

  13. PaddockG. V. & GaubatzJ., 1981. Eur. J. Biochem. 117: 269–273.

    Google Scholar 

  14. Paddock, G. V., Lin, F. K., Frankis, R., Mc Neil, W. & Gaubatz, J., 1983. Comp. Pathobiol. (in press).

  15. NiessingJ., ErbilC. & NeubauerV., 1982. Gene 18: 187–191.

    Google Scholar 

  16. MaxamA. M. & GilbertW., 1980. Methods in Enzymology, Academic Press, New York, 65: 499–560.

    Google Scholar 

  17. ColmanA., ByersM. J., PrimroseS. B. & LyonsA., 1978. Eur. J. Biochem. 91: 303–310.

    Google Scholar 

  18. RadloffR., BauerW. & VinogradJ., 1967. Proc. Natl. Acad. Sci. USA 57: 1514–1522.

    Google Scholar 

  19. TuC-P. D. & CohenS. N., 1980. Gene 10: 177–183.

    Google Scholar 

  20. HoopesB. C., Mc ClureW. R., 1981. Nucleic Acids Res. 9: 5493–5504.

    Google Scholar 

  21. GalibertF., HérisséJ. & CourtoisG., 1979. Gene 6: 1–22.

    Google Scholar 

  22. GoodmanM., MooreW. G. & MatsudaG., 1975. Nature 253: 603–608.

    Google Scholar 

  23. EngelJ. D. & DodgsonJ. B., 1980. Proc. Natl. Acad. Sci. USA 77: 2596–2600.

    Google Scholar 

  24. ChapmanB. S., TobinA. J. & HoodL. E., 1980. J. Biol. Chem. 255: 9051–9059.

    Google Scholar 

  25. OberthürW., VoelterW. & BraunitzerG., 1980. Hoppe-Sevler's Z. Physiol. Chem. 361: 969–975.

    Google Scholar 

  26. WilsonJ. T., WilsonL. B., ReddyV. B., CavallescoC., GhoshP. K., ReilJ. K., ForgetB. G., WeissmanS. M., 1980. J. Biol. Chem. 255: 2807–2815.

    Google Scholar 

  27. NishiokaY. & LederP., 1979. Cell 18: 875–882.

    Google Scholar 

  28. ProudfootN. J. & ManiatisT., 1980. Cell 21: 537–544.

    Google Scholar 

  29. CraikC. S., BuchmanS. R. & BeychokS., 1980. Proc. Natl. Acad. Sci. USA 77: 1384–1388.

    Google Scholar 

  30. RoninsonI. B. & IngramV. M., 1982. Cell 28: 515–521.

    Google Scholar 

  31. KonkelD. A., MaizelJ. V., J. R.Maizel & LederP., 1979. Cell 18: 865–873.

    Google Scholar 

  32. LawnR. M., EfstratiadisA., O'ConnelC. & ManiatisT., 1980. Cell 21: 647–651.

    Google Scholar 

  33. HardisonR. C., ButlerE. T.III, LacyE., ManiatisT., RosenthalN. & EfstratiadisA., 1979. Cell 18: 1285–1297.

    Google Scholar 

  34. FrankisR. & PaddockG. V., 1982. J. Mol. Biol. 157: 681–686.

    Google Scholar 

  35. ProudfootN. J., BrownleeG. G., 1976. Nature 263: 211–214.

    Google Scholar 

  36. FitzgeraldM. & SkenkT., 1981. Cell 24: 251–260.

    Google Scholar 

  37. BaralleleF. E. & BrownleeG. G., 1978. Nature 274: 84–87.

    Google Scholar 

  38. PerlerF. EfstratiadisA. LomedicoP., GilbertW., KolodnerR. & DodgsonJ., 1980. Cell 21: 555–565.

    Google Scholar 

  39. ZimmerE. A., MartinS. L., BeverleyS. M., KanY. W. & WilsonA. C., 1980. Proc. Natl. Acad. Sci. USA 77: 2158–2162.

    Google Scholar 

  40. LauerJ., ShenC-K., J.Shen & ManiatisT., 1980. Cell 20: 119–130.

    Google Scholar 

  41. WilsonA. C., CarlsonS. S. & WhiteT. J., 1977. A. Rev. Biochem. 46: 573–639.

    Google Scholar 

  42. NiessingJ., 1981. Biochem. Int. 2: 113–120.

    Google Scholar 

  43. BertlesJ. F. & BorgeseT. A., 1968. J. Clin. Invest. 47: 679–689.

    Google Scholar 

  44. BrownJ. L. & IngramV. M., 1974. J. Biol. Chem. 249: 3960–3972.

    Google Scholar 

  45. BraunitzerG. & OberthuerW., 1979. Hoppe-Seyler's Z. Physiol. Chem. 360: 679–683.

    Google Scholar 

  46. ArnoneA. & PerutzM. F., 1974. Nature 249: 34–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tahar, S.B., Scherrer, K. Determination of the primary sequence of the duck αD globin mRNA and comparison of all adult duck and chick globin mRNA sequences. Mol Biol Rep 9, 101–113 (1983). https://doi.org/10.1007/BF00777480

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00777480

Keywords

Navigation