Skip to main content
Log in

Evolution of α- and β-Globin genes and their regulatory systems in light of the hypothesis of domain organization of the genome

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The α- and β-globin gene domains are a traditional model for study of the domain organization of the eucaryotic genome because these genes encode hemoglobin, a physiologically important protein. The α-globin and β-globin gene domains are organized in completely different ways, while the expression of globin genes is tightly coordinated, which makes it extremely interesting to study the origin of these genes and the evolution of their regulatory systems. In this review, the organization of the α- and β-globin gene domains and their genomic environment in different taxonomic groups are comparatively analyzed. A new hypothesis of possible evolutionary pathways for segregated α- and β-globin gene domains of warm-blooded animals is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LCR:

locus control region

MRE:

major regulatory element

References

  1. Bodnar, J. W. (1988) A domain model for eukaryotic DNA organization: a molecular basis for cell differentiation and chromosome evolution, J. Theor. Biol., 132, 479–507.

    Article  CAS  PubMed  Google Scholar 

  2. Razin, S. V., and Vassetzky, Y. S. (1992) Domain organization of eukaryotic genome, Cell Biol. Int. Rep., 16, 697–708.

    Article  CAS  PubMed  Google Scholar 

  3. Razin, S. V., and Ioudinkova, E. S. (2007) Mechanisms controlling activation of the alpha-globin gene domain in chicken erythroid cells, Biochemistry (Moscow), 72, 467–470.

    Article  CAS  Google Scholar 

  4. Razin, S. V., Farrell, C. M., and Recillas-Targa, F. (2003) Genomic domains and regulatory elements operating at the domain level, Int. Rev. Cytol., 226, 63–125.

    Article  CAS  PubMed  Google Scholar 

  5. Wallace, J. A., and Felsenfeld, G. (2007) We gather together: insulators and genome organization, Curr. Opin. Genet. Dev., 17, 400–407.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Dillon, N., and Sabbatini, P. (2000) Functional gene expression domains: defining the functional units of eukaryotic gene regulation, BioEssays, 22, 657–665.

    Article  CAS  PubMed  Google Scholar 

  7. Miller, J. L. (2002) Hemoglobin switching and modulation: genes, cells, and signals, Curr. Opin. Hematol., 9, 87–92.

    Article  PubMed  Google Scholar 

  8. Razin, S. V., Ulianov, S. V., Ioudinkova, E. S., Gushchanskaya, E. S., Gavrilov, A. A., and Iarovaia, O. V. (2012) Domains of α- and β-globin genes in the context of the structural-functional organization of the eukaryotic genome, Biochemistry (Moscow), 77, 1409–1423.

    Article  CAS  Google Scholar 

  9. Craddock, C. F., Vyas, P., Sharpe, J. A., Ayyub, H., Wood, W. G., and Higgs, D. R. (1995) Contrasting effects of alpha and beta globin regulatory elements on chromatin structure may be related to their different chromosomal environment, EMBO J., 14, 1718–1726.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Recillas-Targa, F., and Razin, S. V. (2001) Chromatin domains and regulation of gene expression: familiar and enigmatic clusters of chicken globin genes, Crit. Rev. Eukaryot. Gene Expr., 11, 227–242.

    CAS  PubMed  Google Scholar 

  11. Hughes, J. R., Cheng, J. F., Ventress, N., Prabhakar, S., Clark, K., Anguita, E., De Gobbi, M., de Jong, P., Rubin, E., and Higgs, D. R. (2005) Annotation of cis-regulatory elements by identification, subclassification, and functional assessment of multispecies conserved sequences, Proc. Natl. Acad. Sci. USA, 102, 9830–9835.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Flint, J., Tufarelli, C., Peden, J., Clark, K., Daniels, R. J., Hardison, R., Miller, W., Philipsen, S., Tan-Un, K. C., and McMorrow, T. (2001) Comparative genome analysis delimits a chromosomal domain and identifies key regulatory elements in the alpha globin cluster, Hum. Mol. Genet., 10, 371–382.

    Article  CAS  PubMed  Google Scholar 

  13. Tufarelli, C., Hardison, R., Miller, W., Hughes, J., Clark, K., Ventress, N., Frischauf, A. M., and Higgs, D. R. (2004) Comparative analysis of the alpha-like globin clusters in mouse, rat, and human chromosomes indicates a mechanism underlying breaks in conserved synteny, Genome Res., 14, 623–630.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chen, H., Lowrey, C. H., and Stamatoyannopoulos, G. (1997) Analysis of enhancer function of the HS-40 core sequence of the human alpha-globin cluster, Nucleic Acids Res., 25, 2917–2922.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Higgs, D. R., Wood, W. G., Jarman, A. P., Sharpe, J., Lida, J., Pretorius, I.-M., and Ayyub, H. (1990) A major positive regulatory region located far upstream of the human α-globin gene locus, Gene Dev., 4, 1588–1601.

    Article  CAS  PubMed  Google Scholar 

  16. Jarman, A. P., Wood, W. G., Sharpe, J. A., Gourdon, G., Ayyub, H., and Higgs, D. R. (1991) Characterization of the major regulatory element upstream of the human α-globin gene cluster, Mol. Cell Biol., 11, 4679–4689.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Ioudinkova, E. S., Ulianov, S. V., Bunina, D., Iarovaia, O. V., Gavrilov, A. A., and Razin, S. V. (2011) The inactivation of the π gene in chicken erythroblasts of adult lineage is not mediated by packaging of the embryonic part of the α-globin gene domain into a repressive heterochromatin-like structure, Epigenetics, 6, 1481–1488.

    Article  CAS  PubMed  Google Scholar 

  18. Knezetic, J. A., and Felsenfeld, G. (1993) Mechanism of developmental regulation of alpha pi, the chicken embryonic alpha-globin gene, Mol. Cell Biol., 13, 4632–4639.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Sabath, D. E., Spangler, E. A., Rubin, E. M., and Stamatoyannopoulos, G. (1993) Analysis of the human zeta-globin gene promoter in transgenic mice, Blood, 82, 2899–2905.

    CAS  PubMed  Google Scholar 

  20. Singal, R., and van Wert, J. M. (2001) De novo methylation of an embryonic globin gene during normal development is strand specific and spreads from the proximal transcribed region, Blood, 98, 3441–3446.

    Article  CAS  PubMed  Google Scholar 

  21. Singal, R., van Wert, J. M., and Ferdinand, L., Jr. (2002) Methylation of alpha-type embryonic globin gene alpha pi represses transcription in primary erythroid cells, Blood, 100, 4217–4222.

    Article  CAS  PubMed  Google Scholar 

  22. Garrick, D., De Gobbi, M., Samara, V., Rugless, M., Holland, M., Ayyub, H., Lower, K., Sloane-Stanley, J., Gray, N., and Koch, C. (2008) The role of the polycomb complex in silencing alpha-globin gene expression in nonerythroid cells, Blood, 112, 3889–3899.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Hughes, J. R., Cheng, J. F., Ventress, N., and Prabhakar, S. (2000) Annotation of cis-regulatory elements by identification, subclassification, and functional assessment of multispecies conserved sequences, Proc. Natl. Acad. Sci. USA, 102, 9830–9835.

    Article  Google Scholar 

  24. Gavrilov, A. A., and Razin, S. V. (2008) Spatial configuration of the chicken α-globin gene domain: immature and active chromatin hubs, Nucleic Acids Res., 36, 4629–4640.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Vernimmen, D., De Gobbi, M., Sloane-Stanley, J. A., Wood, W. G., and Higgs, D. R. (2007) Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression, EMBO J., 26, 2041–2051.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Vernimmen, D., Marques-Kranc, F., Sharpe, J. A., Sloane-Stanley, J. A., Wood, W. G., Wallace, H. A., Smith, A. J., and Higgs, D. R. (2009) Chromosome looping at the human alpha-globin locus is mediated via the major upstream regulatory element (HS-40), Blood, 114, 4253–4260.

    Article  CAS  PubMed  Google Scholar 

  27. Ioudinkova, E. S., and Razin, S. V. (2003) Regulatory systems of genome domains with vague boundaries, Genetika, 39, 182–186.

    Google Scholar 

  28. Anguita, E., Johnson, C. A., Wood, W. G., Turner, B. M., and Higgs, D. R. (2001) Identification of a conserved erythroid specific domain of histone acetylation across the alpha-globin gene cluster, Proc. Natl. Acad. Sci. USA, 98, 12114–12119.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. De Gobbi, M., Anguita, E., Hughes, J., Sloane-Stanley, J. A., Sharpe, J. A., Koch, C. M., Dunham, I., Gibbons, R. J., Wood, W. G., and Higgs, D. R. (2007) Tissue-specific histone modification and transcription factor binding in alpha globin gene expression, Blood, 110, 4503–4510.

    Article  PubMed  Google Scholar 

  30. Philonenko, E. S., Klochkov, D. B., Borunova, V. V., Gavrilov, A. A., Razin, S. V., and Iarovaia, O. V. (2009) TMEM8 — a non-globin gene entrapped in the globin web, Nucleic Acids Res., 37, 7394–7406.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Forrester, W. C., Epner, E., Driscoll, M. C., Enver, T., Brice, M., Papayannopoulou, T., and Groudine, M. (1990) A deletion of the human β-globin locus activation region causes a major alteration in chromatin structure and replication across the entire β-globin locus, Gene Dev., 4, 1637–1649.

    Article  CAS  PubMed  Google Scholar 

  32. Grosveld, F., van Assandelt, G. B., Greaves, D. R., and Kollias, B. (1987) Position-independent, high-level expression of the human β-globin gene in transgenic mice, Cell, 51, 975–985.

    Article  CAS  PubMed  Google Scholar 

  33. Hardison, R., Slightom, J. L., Gumicio, D. L., Goodman, M., Stojanovic, N., and Miller, W. (1997) Locus control regions of mammalian beta-globin gene clusters: combining phylogenetic analyses and experimental results to gain functional insights, Gene, 205, 73–94.

    Article  CAS  PubMed  Google Scholar 

  34. Li, Q., Zhou, B., Powers, P., Enver, T., and Stamatoyannopoulos, G. (1990) β-Globin locus activations regions: conservation of organization, structure and function, Proc. Natl. Acad. Sci. USA, 87, 8207–8211.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Mason, M. M., Lee, E., Westphal, H., and Reitman, M. (1995) Expression of the chicken β-globin cluster in mice: correct developmental expression and distributed control, Mol. Cell Biol., 15, 407–414.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Talbot, D., Collis, P., Antoniou, M., Vidal, M., Grosveld, F., and Greaves, D. R. (1989) A dominant control region from the human β-globin locus conferring integration siteindependent gene expression, Nature, 338, 352–355.

    Article  CAS  PubMed  Google Scholar 

  37. Dillon, N., and Grosveld, F. (1993) Transcriptional regulation of multigene loci: multilevel control, Trends Genet., 9, 134–137.

    Article  CAS  PubMed  Google Scholar 

  38. Bulger, M., van Doorninck, J. H., Saitoh, N., Telling, A., Farrell, C., Bender, M. A., Felsenfeld, G., Axel, R., Groudine, M., and von Doorninck, J. H. (1999) Conservation of sequence and structure flanking the mouse and human beta-globin loci: the beta-globin genes are embedded within an array of odorant receptor genes, Proc. Natl. Acad. Sci. USA, 96, 5129–5134.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Farrell, C. M., West, A. G., and Felsenfeld, G. (2002) Conserved CTCF insulator elements flank the mouse and human beta-globin loci, Mol. Cell Biol., 22, 3820–3831.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Li, Q., and Stamatoyannopoulos, G. (1994) Hypersensitive site 5 of the human beta locus control region functions as a chromatin insulator, Blood, 84, 1399–1401.

    CAS  PubMed  Google Scholar 

  41. Tanimoto, K., Liu, Q., Bungert, J., and Engel, J. D. (1999) Effects of altered gene order or orientation of the locus control region on human beta-globin gene expression in mice, Nature, 398, 344–348.

    Article  CAS  PubMed  Google Scholar 

  42. Ulianov, S. V., Gavrilov, A. A., and Razin, S. V. (2012) Spatial organization of the chicken beta-globin gene domain in erythroid cells of embryonic and adult lineages, Epigenetics Chromatin, 5, 16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Palstra, R. J., Tolhuis, B., Splinter, E., Nijmeijer, R., Grosveld, F., and de Laat, W. (2003) The beta-globin nuclear compartment in development and erythroid differentiation, Nat. Genet., 35, 190–194.

    Article  CAS  PubMed  Google Scholar 

  44. Splinter, E., Heath, H., Kooren, J., Palstra, R. J., Klous, P., Grosveld, F., Galjart, N., and de Laat, W. (2006) CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus, Genes Dev., 20, 2349–2354.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Tolhuis, B., Palstra, R. J., Splinter, E., Grosveld, F., and de Laat, W. (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus, Mol. Cell, 10, 1453–1465.

    Article  CAS  PubMed  Google Scholar 

  46. Forsberg, E. C., and Bresnick, E. H. (2001) Histone acetylation beyond promoters: long-range acetylation patterns in the chromatin world, BioEssays, 23, 820–830.

    Article  CAS  PubMed  Google Scholar 

  47. Gribnau, G., Diderich, K., Pruzina, S., Calzolari, R., and Frazer, P. (2000) Intergenic transcription and developmental remodelling of chromatin subdomains in the human β-globin locus, Mol. Cell, 5, 377–386.

    Article  CAS  PubMed  Google Scholar 

  48. Johnson, K. D., Christensen, H. M., Zhao, B., and Bresnick, E. H. (2001) Distinct mechanisms control RNA polymerase II recruitment to a tissue-specific locus control region and a downstream promoter, Mol. Cell, 8, 465–471.

    Article  CAS  PubMed  Google Scholar 

  49. Johnson, K. D., Grass, J. A., Boyer, M. E., Kiekhaefer, C. M., Blobel, G. A., Weiss, M. J., and Bresnick, E. H. (2002) Cooperative activities of hematopoietic regulators recruit RNA polymerase II to a tissue-specific chromatin domain, Proc. Natl. Acad. Sci. USA, 99, 11760–11765.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Kiekhaefer, C. M., Grass, J. A., Johnson, K. D., Boyer, M. E., and Bresnick, E. H. (2002) Hematopoietic-specific activators establish an overlapping pattern of histone acetylation and methylation within a mammalian chromatin domain, Proc. Natl. Acad. Sci. USA, 99, 14309–14314.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Sawado, T., Igarashi, K., and Groudine, M. (2001) Activation of beta-major globin gene transcription is associated with recruitment of NF-E2 to the beta-globin LCR and gene promoter, Proc. Natl. Acad. Sci. USA, 98, 10226–10231.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Schubeler, D., Francastel, C., Cimbora, D. M., Reik, A., Martin, D. I. K., and Groudine, M. (2000) Nuclear localization and histone acetilation: a pathway for chromatin opening and transcription activation of the human β-globin locus, Gene Dev., 14, 940–950.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. De Laat, W., and Grosveld, F. (2003) Spatial organization of gene expression: the active chromatin hub, Chromosome Res., 11, 447–459.

    Article  PubMed  Google Scholar 

  54. De Laat, W., Klous, P., Kooren, J., Noordermeer, D., Palstra, R. J., Simonis, M., Splinter, E., and Grosveld, F. (2008) Three-dimensional organization of gene expression in erythroid cells, Curr. Top. Dev. Biol., 82, 117–139.

    Article  PubMed  Google Scholar 

  55. Prioleau, M.-N., Nony, P., Simpson, M., and Felsenfeld, G. (1999) An insulator element and condensed chromatin region separate the chicken β-globin locus from an independently regulated erythroid-specific folate receptor gene, EMBO J., 18, 4035–4048.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Opazo, J. C., Butts, G. T., Nery, M. F., Storz, J. F., and Hoffmann, F. G. (2013) Whole-genome duplication and the functional diversification of teleost fish hemoglobins, Mol. Biol. Evol., 30, 140–153.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Ganis, J. J., Hsia, N., Trompouki, E., de Jong, J. L., DiBiase, A., Lambert, J. S., Jia, Z., Sabo, P. J., Weaver, M., Sandstrom, R., Stamatoyannopoulos, J. A., Zhou, Y., and Zon, L. I. (2012) Zebrafish globin switching occurs in two developmental stages and is controlled by the LCR, Dev. Biol., 366, 185–194.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Brownlie, A., Hersey, C., Oates, A. C., Paw, B. H., Falick, A. M., Witkowska, H. E., Flint, J., Higgs, D., Jessen, J., Bahary, N., Zhu, H., Lin, S., and Zon, L. (2003) Characterization of embryonic globin genes of the zebrafish, Dev. Biol., 255, 48–61.

    Article  CAS  PubMed  Google Scholar 

  59. Tiedke, J., Gerlach, F., Mitz, S. A., Hankeln, T., and Burmester, T. (2011) Ontogeny of globin expression in zebrafish (Danio rerio), J. Comp. Physiol. B, 181, 1011–1021.

    Article  CAS  PubMed  Google Scholar 

  60. Davidson, A. J., and Zon, L. I. (2004) The “definitive” (and “primitive”) guide to zebrafish hematopoiesis, Oncogene, 23, 7233–7246.

    Article  CAS  PubMed  Google Scholar 

  61. Maruyama, K., Ishikawa, Y., Yasumasu, S., and Iuchi, I. (2007) Globin gene enhancer activity of a DNase I hypersensitive site-40 homolog in medaka Oryzias latipes, Zool. Sci., 24, 997–1004.

    Article  CAS  PubMed  Google Scholar 

  62. Maruyama, K., Yasumasu, S., Naruse, K., Mitani, H., Shima, A., and Iuchi, I. (2004) Genomic organization and developmental expression of globin genes in the teleost Oryzias latipes, Gene, 335, 89–100.

    Article  CAS  PubMed  Google Scholar 

  63. Vinogradov, S. N., Hoogewijs, D., Bailly, X., Arredondo-Peter, R., Gough, J., Dewilde, S., Moens, L., and Vanfleteren, J. R. (2006) A phylogenomic profile of globins, BMC Evol. Biol., 6, 31.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Hoffmann, F. G., Opazo, J. C., and Storz, J. F. (2012) Evolution of the globin gene family in deuterostomes: lineage-specific patterns of diversification and attrition, Mol. Biol. Evol., 29, 303–312.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Hoffmann, F. G., Opazo, J. C., and Storz, J. F. (2010) Gene cooption and convergent evolution of oxygen transport hemoglobins in jawed and jawless vertebrates, Proc. Natl. Acad. Sci. USA, 107, 14274–14279.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Czelusniak, J., Goodman, M., Hewett-Emmett, D., Weiss, M. L., Venta, P. J., and Tashian, R. E. (1982) Phylogenetic origins and adaptive evolution of avian and mammalian haemoglobin genes, Nature, 298, 297–300.

    Article  CAS  PubMed  Google Scholar 

  67. Goodman, M., Moore, G. W., and Matsuda, G. (1975) Darwinian evolution in the genealogy of haemoglobin, Nature, 253, 603–608.

    Article  CAS  PubMed  Google Scholar 

  68. Goodman, M., Miyamoto, M. M., and Czelusniak, J. (1987) Globins: a case study in molecular phylogeny, in Molecules and Morphology in Evolution: Conflict or Compromise? (Patterson, C., ed.) Cambridge University Press, Cambridge, UK, pp. 140–176.

    Google Scholar 

  69. Hardison, R. S. (2008) Globin genes on the move, J. Biol., 7, 35.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Hardison, R. S. (2005) in Encyclopedia of Life Sciences, John Wiley & Sons, Ltd. (www.els.net).

    Google Scholar 

  71. De Leo, A. A., Wheeler, D., Lefevre, C., Cheng, J. F., Hope, R., Kuliwaba, J., Nicholas, K. R., Westerman, M., and Graves, J. A. (2005) Sequencing and mapping hemoglobin gene clusters in the Australian model dasyurid marsupial Sminthopsis macroura, Cytogenet. Genome Res., 108, 333–341.

    Article  PubMed  Google Scholar 

  72. Patel, V. S., Cooper, S. J., Deakin, J. E., Fulton, B., Graves, T., Warren, W. C., Wilson, R. K., and Graves, J. A. (2008) Platypus globin genes and flanking loci suggest a new insertional model for beta-globin evolution in birds and mammals, BMC Biol., 6, 34.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Hoffmann, F. G., Opazo, J. C., and Storz, J. F. (2008) New genes originated via multiple recombinational pathways in the beta-globin gene family of rodents, Mol. Biol. Evol., 25, 591–602.

    Article  CAS  PubMed  Google Scholar 

  74. Wheeler, D., Hope, R., Cooper, S. B., Dolman, G., Webb, G. C., Bottema, C. D., Gooley, A. A., Goodman, M., and Holland, R. A. (2001) An orphaned mammalian beta-globin gene of ancient evolutionary origin, Proc. Natl. Acad. Sci. USA, 98, 1101–1106.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Wheeler, D., Hope, R. M., Cooper, S. B., Gooley, A. A., and Holland, R. A. (2004) Linkage of the beta-like omegaglobin gene to alpha-like globin genes in an Australian marsupial supports the chromosome duplication model for separation of globin gene clusters, J. Mol. Evol., 58, 642–652.

    Article  CAS  PubMed  Google Scholar 

  76. Hoffmann, F. G., and Storz, J. F. (2007) The alphaD-globin gene originated via duplication of an embryonic alphalike globin gene in the ancestor of tetrapod vertebrates, Mol. Biol. Evol., 24, 1982–1990.

    Article  CAS  PubMed  Google Scholar 

  77. Opazo, J. C., Hoffmann, F. G., and Storz, J. F. (2008) Differential loss of embryonic globin genes during the radiation of placental mammals, Proc. Natl. Acad. Sci. USA, 105, 1590–1595.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Dolgushin.

Additional information

Original Russian Text © O. V. Iarovaia, E. S. Ioudinkova, N. V. Petrova, K. V. Dolgushin, A. V. Kovina, A. V. Nefedochkina, Y. S. Vassetzky, S. V. Razin, 2014, published in Biokhimiya, 2014, Vol. 79, No. 11, pp. 1405–1416.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iarovaia, O.V., Ioudinkova, E.S., Petrova, N.V. et al. Evolution of α- and β-Globin genes and their regulatory systems in light of the hypothesis of domain organization of the genome. Biochemistry Moscow 79, 1141–1150 (2014). https://doi.org/10.1134/S0006297914110017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914110017

Key words

Navigation