Skip to main content
Log in

Conformational transitions in closed circular DNA molecules I. Topological and energetical considerations

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A theory of conformational transitions in closed circular DNA as a function of topological linking number of the molecule (α) is elaborated taking into account topological and energetical considerations. The theory predicts a step-like dependence of a number of superhelical turns in DNA molecules (τ) on Δα. Thus, the number of superhelical turns τ=Δα for small values of Δα. For a large Δα (when conformational transitions begin to occur) τ=Δα−∑ϕij, where ∑ϕij is the total angle of conformational transitions for a given Δα. This prediction is in good agreement with published data on the dependence of the sedimentation coefficient of circular DNA molecules on their topological linking number. The results also allow to explain the disagreement between a number of titratable superhelical turns in circular DNA molecules and a number of supercoiles seen on electron micrographs for molecules with sufficiently large Δα.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Franklin, R.E. and Gosling, R.G., Nature, 171, 740 (1953).

    Google Scholar 

  2. Marvin, D.A., Spencer, M., and Wilkins, M.H.F., J. Mol. Biol., 3, 547 (1961).

    Google Scholar 

  3. Mokulsky, M.A., Kapitonova, K.A., and Mokulskaya, T.D., Molec. Biol. (Russ.), 6, 883 (1972).

    Google Scholar 

  4. Davies, D.R. and Baldwin, R.L., J. Mol. Biol., 6, 251 (1963).

    Google Scholar 

  5. Arnott, S., Chandrasekaran, R., Hukins, D.W.L., Smith, P.J.C., and Watts, L., J. Mol. Biol., 88, 523 (1974).

    Google Scholar 

  6. Zurkin, V.B., Lysov, Yu.P., and Ivanov, V.I., Biopolymers, 17, 377 (1978).

    Google Scholar 

  7. Bram, S. and Tougard, P., Nature New Biol., 239, 128 (1972).

    Google Scholar 

  8. Pilet, J. and Brahms, J., Nature New Biol., 236, 99 (1972).

    Google Scholar 

  9. Bram, S., Biochem. Biophys. Res. Comm., 48, 1088 (1972).

    Google Scholar 

  10. Tunis-Schneider, M.J.B., and Maestre, M.F., J. Mol. Biol., 52, 521 (1970).

    Google Scholar 

  11. Nelson, R.G. and Johnson, W.C., Biochem. Biophys. Res. Comm., 41, 211 (1970).

    Google Scholar 

  12. Green, J. and Mahler, H.R., Biochemistry, 10, 2200 (1971).

    Google Scholar 

  13. Brahms, J. and Mommaerts, W.F.H.M., J. Mol. Biol. 10, 73 (1964).

    Google Scholar 

  14. Pohl, F.M. and Jovin, T.M., J. Mol. Biol., 67, 375 (1972).

    Google Scholar 

  15. Lezius, A.G. and Gottschalk, E.M., Hoppe-Seyler's Z. Physiol. Chem. 351, 413 (1970).

    Google Scholar 

  16. Johnson, R.S., Chan, A., and Hanlon, S., Biochemistry, II, 4347 (1972).

    Google Scholar 

  17. Hanlon, S., Johnson, R.S., and Chan, A., Biochemistry, 13, 3963 (1974).

    Google Scholar 

  18. Gottesfeld, J.M., Bonners, J.R., Radda, G.K., and Walker, I.O., Biochemistry, 13, 2937 (1974).

    Google Scholar 

  19. Cowman, M.K. and Fasman, G.D., Proc. Nat. Acad. Sci. USA, 75, 4759 (1978).

    Google Scholar 

  20. Polacow, I., and Simpson, R.T., Biochem. Biophys. Res. Comm., 52, 202 (1973).

    Google Scholar 

  21. Kazamatsu, H. and Vinograd, J., Ann. Rev. Biochem. 43, 695 (1974).

    Google Scholar 

  22. Itoh, T. and Tomizawa, J.I., Nature, 270, 78 (1977).

    Google Scholar 

  23. Cairns, J., J. Mol. Biol., 6, 208 (1963).

    Google Scholar 

  24. Worcel A. and Burgi E., J. Mol. Biol., 71 (1972).

  25. Cook, P.R. and Brazell, I.A., J. Cell Sci., 19, 261 (1975).

    Google Scholar 

  26. Cook, P.R. and Brazell, I.A., J. Cell Sci., 22, 287 (1976).

    Google Scholar 

  27. Ide, T., Nakane, M., Anzai, K., and Andoh, T., Nature, 258, 445 (1975).

    Google Scholar 

  28. Paulson, J.R. and Laemmli, U.K., Cell, 12, 817 (1977).

    Google Scholar 

  29. Benyajati, C. and Worcel, A., Cell, 9, 393 (1976).

    Google Scholar 

  30. Pinon, R. and Salts, Y., Proc. Nat. Acad. Sci. USA, 74, 2850 (1977).

    Google Scholar 

  31. McCready, S.J., Cox, B.S., and mcLaughlin, C.S., Exp. Cell Res., 108, 473 (1977).

    Google Scholar 

  32. Bauer, W. and Vinograd, J., J. Mol. Biol., 33, 141 (1968).

    Google Scholar 

  33. Glaubiger, D. and Hearst, J.E., Biopolymers, 5, 691 (1967).

    Google Scholar 

  34. Wang, J.C., J. Mol. Biol., 43, 25 (1969).

    Google Scholar 

  35. Maestre, M.F. and Wang, J.C., Biopolymers, 10, 1021 (1971).

    Google Scholar 

  36. Belintsev, B.N., Gagua, A.V., and Nedospasov, S.A., Nucl. Acids Res., 6, 983 (1979).

    Google Scholar 

  37. Benham, C.J., J. Mol. Biol., 123 (1978).

  38. Vologodskii, A.V., Anshelevich, V.V., Lukashin, A.V., and Frank-Kamenetskii, M.D., Nature, 280, 294.

  39. Bram, S., Nature New Biol., 232, 174 (1971).

    Google Scholar 

  40. Bram, S., Proc. Nat. Acad. Sci. USA, 70, 2167 (1973).

    Google Scholar 

  41. Upholt, W.B., Gray, H.B., and Vinograd, J., J. Mol. Biol., 62, 21 (1971).

    Google Scholar 

  42. Wang, J.C., J. Mol. Biol., 87, 797 (1974).

    Google Scholar 

  43. Fukatsu, M. and Kurata, M., J. Chem. Phys., 44, 4539 (1966).

    Google Scholar 

  44. Bloomfield, V.A., Proc. Nat. Acad. Sci. USA, 55, 717 (1966).

    Google Scholar 

  45. Wang, J.C., J. Mol. Biol., 89, 783 (1974).

    Google Scholar 

  46. Liu, L.F. and Wang, L.C., Biochim. Biophys. Acta, 395, 405 (1975).

    Google Scholar 

  47. Griffith, J.D., Science, 201, 525 (1978).

    Google Scholar 

  48. Finch, J.T., Lutter, L.C., Rhodes, D., Brown, R.S., Rushton, B., Levitt, M., Klug, A., Nature, 269, 29 (1977).

    Google Scholar 

  49. Bram, S., Kouprach, S., and Bandy, P., Cold Spring Harbor Symp. Quant. Biol., 42, 23 (1978).

    Google Scholar 

  50. Levitt, M., Proc. Nat. Acad. Sci. USA, 75, 640 (1978).

    Google Scholar 

  51. Shure, W. and Vinograd, J., Cell, 8, 215 (1976).

    Google Scholar 

  52. Campbell, A.M. and Eason, R., FEBS Lett., 55, 212 (1975).

    Google Scholar 

  53. Woodworth-Gutai, M., Lebowitz, J., Kato, A.C., and Denhardt, D.T., Nucl. Acids Res., 4, 1243 (1977).

    Google Scholar 

  54. Lebowitz, J., Chaudhuri, A.K., Gonenne, A., and Kitos, J., Nucl. Acids Res., 4, 1695 (1977).

    Google Scholar 

  55. Pohl, F.M., Jovin, T.M., Baehr, W., and Holbrook, J.J., Proc. Nat. Acad. Sci. USA, 69, 3805 (1972).

    Google Scholar 

  56. Follett, E.A.C. and Crowford, L.V., J. Mol. Biol., 28, 455 (1967).

    Google Scholar 

  57. Keller, W., Muller, V., Eicken, I., Wendel, I., and Zentgraf, H., Cold Spring Harbor Symp. Quant. Biol., 42, 227 (1978).

    Google Scholar 

  58. Germond, J.E., Hirt, B., Oudet, P., Gross-Bellard, M., and Chambon, P., Proc. Nat. Acad. Sci. USA, 72, 1843 (1975).

    Google Scholar 

  59. Luchnik, A.N., Mol. Biol. Rep., 6, 11 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luchnik, A.N. Conformational transitions in closed circular DNA molecules I. Topological and energetical considerations. Mol Biol Rep 6, 3–9 (1980). https://doi.org/10.1007/BF00775746

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00775746

Keywords

Navigation