Skip to main content
Log in

On multilinear operators commuting with Lie derivatives

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

LetE 1, ...,E k andE be natural vector bundles defined over the categoryMf + m of smooth orientedm-dimensional manifolds and orientation preserving local diffeomorphisms, withm≥2. LetM be an object ofMf + m which is connected. We give a complete classification of all separately continuousk-linear operatorsD : Γc(E 1 M) × ... × Γc(E k M) → Γ(EM) defined on sections with compact supports, which commute whith Lie derivatives, i.e., which satisfy

$$\mathcal{L}_X (D(s_1 , \ldots ,s_k )) = \sum\limits_{i = 1}^k D (s_1 , \ldots ,\mathcal{L}_X s_i , \ldots ,s_k ),$$

for all vector fieldsX onM and sectionss j ε Γ c (E j M), in terms of local natural operators and absolutely invariant sections. In special cases we do not need the continuity assumption. We also present several applications in concrete geometrical situations, in particular we give a completely algebraic characterization of some well-known Lie brackets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cahen, M.;de Wilde, M.;Gutt, S.: Local cohomology of the algebra ofC -functions on a connected manifold.Lett. Math. Phys. 4 (1980), 157–167.

    Google Scholar 

  2. Čap, A.: All linear and bilinear natural concomitants of vector valued differential forms.Comment. Math. Univ. Carol. 31 (1990), 567–587.

    Google Scholar 

  3. Čap, A.;Slovák, J.: Infinitesimally natural operators are natural.Differ. Geom. Appl. 2 (1990), 45–55.

    Google Scholar 

  4. de Wilde, M.;Lecomte, P.: Algebraic characterization of the algebra of functions and of the Lie algebra of vector fields on a manifold.Compos. Math. 45 (1982), 199–205.

    Google Scholar 

  5. Eck, D.J.: Natural Sheafs.Ill. J. Math. 31 (1987), 200–207.

    Google Scholar 

  6. Epstein, D.B.A.;Thurston, W.P.: Transformation groups and natural bundles.Proc. Lond. Math. Soc. 38 (1979), 219–236.

    Google Scholar 

  7. Frölicher, A.;Kriegl, A.:Linear spaces and differentiation theory. Pure and Applied Mathematics. J. Wiley, Chichester 1988.

    Google Scholar 

  8. Frölicher, A.;Nijenhuis, A.: Theory of vector valued differential forms, Part I.Indag. Math. 18 (1956), 338–359.

    Google Scholar 

  9. Hörmander, L.:The Analysis of Linear Partial Differential Operators I. Grundlehren 256. Springer, Berlin New York 1983.

    Google Scholar 

  10. Kirillov, A.A.: Invariant operators over geometrical quantities. In:Current problems of mathematics, Vol. 16. VINITI, 1980, pp. 3–29 (Russian).

  11. Kolář, I.;Michor, P.W.: All natural concomitants of vector valued differential forms. Proc. Winter School on Geometry and Physics, Srnì 1987.Supp. Rend. Circ. Mat. Palermo, II. Ser. 16 (1987), 101–108.

    Google Scholar 

  12. Kolář, I.;Michor, P.W.;Slovák, J.:Natural Operations in Differential Geometry. Springer, Berlin New York 1993.

    Google Scholar 

  13. Krupka, D.;Mikolášová, V.: On the uniqueness of some differential invariants:d, [, ], Δ.Czech. Math. J. 34 (1984), 588–597.

    Google Scholar 

  14. Michor, P.W.: Remarks on the Schouten-Nijenhuis bracket.Supp. Rend. Circ. Math. Palermo, II. Ser. 16 (1987), 207–215.

    Google Scholar 

  15. Michor, P.W.: Remarks on the Frölicher-Nijenhuis bracket. In:Proc. of the Conf. on Diff. Geom. and its Appl., Brno 1986. D. Reidl, 1987.

  16. Michor, P.W.;Schicketanz, H.: A cohomology for vector valued differential forms.Ann. Global Anal. Geom. 7 (1989), 163–169.

    Google Scholar 

  17. Palais, R.S.;Terng, C.L.: Natural bundles have finite order.Topology 16 (1977), 271–277.

    Google Scholar 

  18. Samelson, H.:Notes on Lie algebras. Universitext. Springer-Verlag, 1989.

  19. Slovák, J.: Peetre theorem for nonlinear operators.Ann. Global Anal. Geom. 6 (1988), 273–283.

    Google Scholar 

  20. Terng, C.L.: Natural vector bundles and natural differential operators.Am. J. Math. 100 (1978), 775–828.

    Google Scholar 

  21. van Strien, S.: Unicity of the Lie product.Comps. Math. 40 (1980), 79–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P.W. Michor

First author supported by project P 77724 PHY of ‘Fonds zur Förderung der wissenschaftlichen Forschung’. Second author supported by grant No. 201/93/2125 of the GAČR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čap, A., Slovák, J. On multilinear operators commuting with Lie derivatives. Ann Glob Anal Geom 13, 251–279 (1995). https://doi.org/10.1007/BF00773659

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00773659

Key words

MSC 1991

Navigation