Skip to main content
Log in

Characterization of H+/OH currents in phospholipid vesicles

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

In pure phospholipid vesicles, the conductivity of H+/OH ions exceeds that for other simple inorganic ions. Protons achieve electrochemical equilibrium across egg phosphatidylcholine vesicles within tens of minutes. When pH gradients are established across vesicles, transmembrane potentials develop. Conversely, the establishment of transmembrane potentials leads to the formation of pH gradients. When the phenomenological permeability of H+/OH ions in vesicles is estimated, values are obtained that are much greater (six orders of magnitude larger) than those for Na+ or K+. A wide range in the values for this permeability has been reported; however, much of the discrepancy can be attributed to differences in the vesicle systems and experimental conditions. The H+/OH current appears to be modulated by changes in membrane dielectric constant. However, the dependence of this current on the pH gradient and on the membrane voltage argues against simple diffusion mechanisms as the source of the H+/OH current. In addition, in vesicle systems the H+/OH current shows a surprising invariance to changes in the membrane dipole potential, an observation that argues against the role of simple carriers for H+ and OH ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bangham, A. D., Hill, M. W., and Mason, W. T. (1980).Prog. Anesthesiol. 2, 69–77.

    Google Scholar 

  • Barchfeld, G. L., and Deamer, D. W. (1985).Biochim. Biophys. Acta 819, 161–169.

    Google Scholar 

  • Cafiso, D. S., and Hubbell, W. L. (1978a).Biochemistry 17, 187–195.

    Google Scholar 

  • Cafiso, D. S., and Hubbell, W. L. (1987b).Biochemistry 17, 3871–3877.

    Google Scholar 

  • Cafiso, D. S., and Hubbell, W. L. (1981).Annu. Rev. Biophys. Bioeng. 10, 217–244.

    Google Scholar 

  • Cafiso, D. S., and Hubbell, W. L. (1983).Biophys. J. 44, 49–57.

    Google Scholar 

  • Clement, N. R., and Gould, J. M. (1981).Biochemistry 20, 1534–1538.

    Google Scholar 

  • Deamer, D. W. (1987).J. Bioenerg. Biomembr. 19, 457–479.

    Google Scholar 

  • Deamer, D. W., and Nichols, J. W. (1983).Proc. Natl. Acad. Sci. USA 80, 165–168.

    Google Scholar 

  • Dilger, J. P., McLaughlin, S. G. A., McIntosh, T. J., and Simon, S. A. (1979).Science 206, 1196–1198.

    Google Scholar 

  • Elamrani, K., and Blume, A. (1983).Biochim. Biophys. Acta 727, 22–30.

    Google Scholar 

  • Flewelling, R. F., and Hubbell, W. L. (1986).Biophys. J. 49, 451–552.

    Google Scholar 

  • Gutknecht, J. (1984).J. Membr. Biol. 82, 105–112.

    Google Scholar 

  • Gutknecht, J. (1987).Biochim. Biophys. Acta 898, 97–108.

    Google Scholar 

  • Gutknecht, J., and Walter, A. (1981).Biochim. Biophys. Acta 641, 183–188.

    Google Scholar 

  • Hauser, H., Phillips, M. C., and Stubbs, M. (1972)Nature (London)239, 342–344.

    Google Scholar 

  • Haydon, D. A., and Hladky, S. B. (1972).Q. Rev. Biophys. 5, 187–282.

    Google Scholar 

  • Huang, C., and Mason, J. T. (1978).Proc. Natl. Acad. Sci. USA 75, 308–310.

    Google Scholar 

  • Johnson, S. M., and Bangham, A. D. (1969)Biochim. Biophys. Acta 193, 82–91.

    Google Scholar 

  • Ketterer, B., Neumcke, B., and Läuger, P. (1971).J. Membr. Biol. 5, 225–245.

    Google Scholar 

  • McLaughlin, S. G. A., and Dilger, J. P. (1980).Physiol. Revs. 60, 825–863.

    Google Scholar 

  • Montal, M., and Mueller, P. (1972).Proc. Natl. Acad. Sci. USA 69, 3561–3566.

    Google Scholar 

  • Nagle, J. F. (1987).J. Bioenerg. Biomembr. 19, 413–426.

    Google Scholar 

  • Nichols, J. W., and Deamer, D. W. (1980).Proc. Natl. Acad. Sci. USA 77, 2038–2042.

    Google Scholar 

  • Nichols, J. W., Hill, M. W., Bangham, A. D., and Deamer, D. W. (1980).Biochim. Biophys. Acta. 596, 393–403.

    Google Scholar 

  • Perkins, W. R., and Cafiso, D. S. (1986).Biochemistry 25, 2270–2276.

    Google Scholar 

  • Perkins, W. R., and Cafiso, D. S. (1987).J. Membr. Biol. 96, 165–173.

    Google Scholar 

  • Rossignol, M. P., Thomas, P., and Grignon, C. (1982).Biochim. Biophys. Acta. 684, 195–199.

    Google Scholar 

  • Singleton, W. S., Gray, M. S., Brown, M. L., and White, J. L. (1965).J. Am. Oil Chem. Soc. 42, 53–57.

    Google Scholar 

  • Szabo, G., Eisenman, G., McLaughlin, S. G. A., and Krasne, S. (1972).Ann. N.Y. Acad. Sci. 195, 273–290.

    Google Scholar 

  • Toyoshima, Y., and Thompson, T. E. (1975).Biochemistry 14, 1518–1524.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perkins, W.R., Cafiso, D.S. Characterization of H+/OH currents in phospholipid vesicles. J Bioenerg Biomembr 19, 443–455 (1987). https://doi.org/10.1007/BF00770029

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00770029

Key Words

Navigation