Skip to main content
Log in

Oxidative coupling of methane. The effect of alkali chlorides on molybdate based catalyst leading to high selectivity in C3-product formation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

LiCl-Na2MoO4 was found to be an active catalyst for oxidative coupling of methane at temperatures around 620 °C. In these systems, the selectivity for the formation of C3-products exceeds the selectivity for the formation of C2-products. While the homogeneous reaction of CH4 and O2 leads to C3H6 as C3-product, the 50% LiCl-50% Na2MoO4 catalyst leads to C3H8 as the predominant C3-product, indicating that in the latter case the reaction cannot be purely homogeneous. The dependency of the product distribution on temperature, gas composition, reactor dimensions, flow rate, CH4/O2 ratio and type of catalyst has been studied. The reaction was studied by co-feeding CH4, O2 and a diluent gas at atmospheric pressure continuously in a conventional flow reactor containing the catalyst. The reaction products observed were: C2H4, C2H6, C3H6, C3H8, H2O and CO + CO2. The two latter gases were the main oxidation products observed. Characterization of the catalysts used was carried out by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.E. Keller and M.M. Bhasin, J. Catal. 73 (1982) 9.

    Google Scholar 

  2. G.J. Hutchings, M.S. Scurrell and J.R. Woodhouse, Chem. Soc. Rev. 18 (1989) 251.

    Google Scholar 

  3. J.R. Anderson, Appl. Catal. 47 (1989) 177.

    Google Scholar 

  4. J.C. Mackie, Catal. Rev. Sci-Eng. 33 (1991) 169.

    Google Scholar 

  5. J. Kiwi, K.R. Thampi and M. Grätzel, J. Chem. Soc. Chem. Commun. (1990) 1690.

  6. J. Kiwi, K.R. Thampi, M. Grätzel, P. Albers and K. Seibold, J. Phys. Chem. 96 (1992) 1344.

    Google Scholar 

  7. H. Matsuhashi, K. Sakurai and K. Arata, Chem. Lett. 4 (1989) 585.

    Google Scholar 

  8. M. Baerns, Catal. Today 1 (1987) 357.

    Google Scholar 

  9. J. Carreiro and M. Baerns, React. Kinet. Catal. Lett. 35 (1987) 349.

    Google Scholar 

  10. J.M. Berty, Appl. Ind. Catal. 1 (1983) 207.

    Google Scholar 

  11. C.F. Cullis, D.E. Keene and D.L. Trimm, J. Catal. 19 (1970) 378.

    Google Scholar 

  12. R. Burch, G.D. Squire and S.C. Tsang, Appl. Catal. 46 (1989) 69.

    Google Scholar 

  13. R. Burch, S. Chalker, G.D. Squire and S.C. Tsang, J. Chem. Soc. Faraday Trans. 86 (1990) 1607.

    Google Scholar 

  14. R. Burch, S. Chalker and P. Loader,Proc. Xth Int. Congr. on Catalysis, Budapest 1992, pp. 8–17.

  15. D.C. Yates and N.E. Zlotin, J. Catal. 124 (1990) 562.

    Google Scholar 

  16. M. Hatano, P. Hinson, K.S. Vines and J.H. Lunsford, J. Catal. 124 (1990) 557.

    Google Scholar 

  17. Z. Kalenik and E. Wolf, J. Catal. 124(1990)566.

    Google Scholar 

  18. G. Lane, E. Miro and E. Wolf, J. Catal. 119 (1989) 161.

    Google Scholar 

  19. T.A. Garibyan and L. Ya. Margolis, Catal. Rev. Sci-Eng. 31 (1990) 355.

    Google Scholar 

  20. E. Drauglis and R. Jaffe,The Physical Basis for Heterogeneous Catalysis (Plenum Press, New York, 1975).

    Google Scholar 

  21. R. Busey and O. Keller, J. Chem. Phys. 41 (1964) 215.

    Google Scholar 

  22. S.J. Korf, J.A. Roos, N.A. de Bruijn, J.G. van Ommen and J.R. Ross, J. Chem. Soc. Chem. Commun. (1987) 1433.

  23. T. Komatsu, T. Amaya and K. Otsuka, Catal. Lett. 3 (1989) 317.

    Google Scholar 

  24. T. Ito, J.-X. Wang, C.-H. Lin and J.H. Lunsford, J. Am. Chem. Soc. 107 (1985) 5062.

    Google Scholar 

  25. H. Zanthoff and M. Baerns, Ind. Eng. Chem. Res. 29 (1990) 2.

    Google Scholar 

  26. V. Kazansky and B. Shelimov, Res. Chem. Interm. 15(1991) 1.

    Google Scholar 

  27. E. Tsang and P. Hampton, J. Phys. Chem. Data 15 (1986) 1087.

    Google Scholar 

  28. A. Proctor and P. Sherwood, Anal. Chem. 52 (1980) 2315.

    Google Scholar 

  29. C.D. Wagner,Handbook of X-ray Photoelectron Spectroscopy (Perkin Elmer, Phys. Elect. Div., Minneapolis, 1979).

    Google Scholar 

  30. T.A. Patterson, J.C. Carrer, D.E. Leyden and D.M. Hercules, J. Phys. Chem. 80 (1976) 1700.

    Google Scholar 

  31. S.O. Grim and L.J. Matienzo, Inorg. Chem. 14 (1975) 1014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiwi, J., Ravidranathan Thampi, K., Mouaddib, N. et al. Oxidative coupling of methane. The effect of alkali chlorides on molybdate based catalyst leading to high selectivity in C3-product formation. Catal Lett 18, 15–26 (1993). https://doi.org/10.1007/BF00769494

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00769494

Keywords

Navigation