Skip to main content
Log in

(Na+ + K+)-ATPase: On the number of the ATP sites of the functional unit

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Questions concerning the number of the ATP sites of the functional unit of (Na+ + K+)-ATPase (i.e., the sodium pump) have been at the center of the controversies on the mechanisms of the catalytic and transport functions of the enzyme. When the available data pertaining to the number of these sites are examined without any assumptions regarding the reaction mechanism, it is evident that although some relevant observations may be explained either by a single site or by multiple ATP sites, the remaining data dictate the existence of multiple sites on the functional unit. Also, while from much of the data it is clear that the multiple sites of the unit enzyme represent the interacting catalytic sites of an oligomer, it is not possible to rule out the existence of a distinct regulatory site for ATP in addition to the interacting catalytic sites. Regardless of the ultimate fate of the regulatory site, any realistic approach to the resolution of the kinetic mechanism of the sodium pump should include the consideration of the established site-site interactions of the oligomer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Askari, A. (1982).Mol. Cell. Biochem. 43, 129–143.

    Google Scholar 

  • Askari, A., and Huang, W.-H. (1980).Biochem. Biophys. Res. Commun. 93, 448–453.

    Google Scholar 

  • Askari, A., and Huang, W.-H. (1981).FEBS Lett. 126, 215–218.

    Google Scholar 

  • Askari, A., and Huang, W.-H. (1982).Biochem. Biophys. Res. Commun. 104, 1447–1453.

    Google Scholar 

  • Askari, A., and Huang, W.-H. (1984).J. Biol. Chem. 259, 4169–4176.

    Google Scholar 

  • Askari, A., and Huang, W.-H. (1985). InThe Sodium Pump (Glynn, I. M., and Ellory, C., eds.), The Company of Biologists, Cambridge, pp. 569–573.

    Google Scholar 

  • Askari, A., Huang, W.-H., and Antieau, J. M. (1980).Biochemistry 19, 1132–1140.

    Google Scholar 

  • Askari, A., Huang, W.-H., and McCormick, P. W. (1983).J. Biol. Chem. 258, 3453–3460.

    Google Scholar 

  • Ball, W. J. (1986).Biochemistry 25, 7155–7162.

    Google Scholar 

  • Brotherus, J. R., Moller, J. V., and Jorgensen, P. L. (1981).Biochem. Biophys. Res. Commun. 100, 146–154.

    Google Scholar 

  • Cantley, L. C. (1981).Curr. Top. Bioenerg. 11, 201–237.

    Google Scholar 

  • Cantley, L. C., Jr., Cantley, L. G., and Josephson, L. (1978).J. Biol. Chem. 253, 7361–7368.

    Google Scholar 

  • Chetverin, A. B. (1986).FEBS Lett. 196, 121–125.

    Google Scholar 

  • Craig, W. S. (1982a).Biochemistry 21, 2667–2674.

    Google Scholar 

  • Craig, W. S. (1982b).Biochemistry 21, 5707–5717.

    Google Scholar 

  • Craig, W. S., and Kyte, J. (1980).J. Biol. Chem. 255, 6262–6269.

    Google Scholar 

  • Czerwinski, A., Gitelman, H. J., and Welt, L. G. (1967).Am. J. Physiol. 213, 786–792.

    Google Scholar 

  • Dzhandzhugazyan, K., and Modyanov, N. (1985). InThe Sodium Pump (Glynn, I. M., and Ellory, C., eds.), The Company of Biologists, Cambridge, pp. 129–134.

    Google Scholar 

  • Esmann, M. (1984).Biochim. Biophys. Acta 787, 81–89.

    Google Scholar 

  • Esmann, M. (1985).Biochim. Biophys. Acta 815, 196–202.

    Google Scholar 

  • Esmann, M. (1986).Biochim. Biophys. Acta 857, 38–47.

    Google Scholar 

  • Esmann, M., and Skou, J. C. (1984).Biochim. Biophys. Acta 787, 71–80.

    Google Scholar 

  • Esmann, M., Skou, J. C., and Christiansen, C. (1979).Biochim. Biophys. Acta 567, 410–420.

    Google Scholar 

  • Esmann, M., Christiansen, C., Karlsson, K.-A., Hasson, G. C., and Skou, J. C. (1980).Biochim. Biophys. Acta 603, 1–12.

    Google Scholar 

  • Fersht, A. R. (1975).Biochemistry 14, 5–12.

    Google Scholar 

  • Fortes, P. A. G., and Han, M. K. (1985).Fed. Proc. 44, 1443.

    Google Scholar 

  • Froehlich, J. P., Albers, R. W., Koval, G. J., Goebel, R., and Berman, M. (1976).J. Biol. Chem. 251, 2186–2188.

    Google Scholar 

  • Fukushima, Y., Yamada, S., and Nakao, M. (1984).J. Biochem. 95, 359–369.

    Google Scholar 

  • Giotta, G. J. (1976).J. Biol. Chem. 251, 1247–1252.

    Google Scholar 

  • Glynn, I. M. (1985). InThe Enzymes of Biological Membranes (Martonosi, A., ed.), Vol. 3, Plenum Press, New York, pp. 35–114.

    Google Scholar 

  • Glynn, I. M., and Karlish, S. J. D. (1975).Annu. Rev. Physiol. 37, 13–55.

    Google Scholar 

  • Glynn, I. M., Howland, J. L., and Richards, D. E. (1985).J. Physiol. 368, 453–469.

    Google Scholar 

  • Haase, W., and Koepsell, H. (1979).Pflugers Arch. 381, 127–135.

    Google Scholar 

  • Hah, J., Goldinger, J. M., and Jung, C. Y. (1985).J. Biol. Chem. 260, 14016–14019.

    Google Scholar 

  • Hansen, O. (1984).Pharmacol. Rev. 36, 143–163.

    Google Scholar 

  • Harada, K., and Wolfe, R. G. (1968).J. Biol. Chem. 253, 4131–4137.

    Google Scholar 

  • Harvey, W. J., and Blostein, R. (1986).J. Biol. Chem. 261, 1724–1729.

    Google Scholar 

  • Hastings, D. F., and Reynolds, J. A. (1979).Biochemistry 18, 817–821.

    Google Scholar 

  • Hayashi, Y., Matsui, H., Maezawa, S., and Takagi, T. (1985). InThe Sodium Pump (Glynn, I. M., and Ellory, C., eds.), The Company of Biologists, Cambridge, pp. 51–56.

    Google Scholar 

  • Hayashi, Y., Matsui, H., and Takagi, T. (1986). InProceedings of the 11th Yamada Conference: Energy Transduction in ATPases, Academic Press, in press.

  • Hegyvary, C., and Post, R. L. (1971).J. Biol. Chem. 246, 5234–5240.

    Google Scholar 

  • Herbert, H., Skriver, E., and Maunsbach, A. B. (1985).FEBS Lett. 187, 182–186.

    Google Scholar 

  • Hill, T. L. (1977).Proc. Natl. Acad. Sci. USA 74, 3632–3636.

    Google Scholar 

  • Hill, T. L., and Levitzki, A. (1980).Proc. Natl. Acad. Sci. USA 77, 5741–5745.

    Google Scholar 

  • Hobbs, A. S., Albers, R. W., Froehlich, J. P., and Heller, P. F. (1985).J. Biol. Chem. 260, 2035–2037.

    Google Scholar 

  • Huang, W.-H., and Askari, A. (1979).Biochim. Biophys. Acta 578, 547–552.

    Google Scholar 

  • Huang, W.-H., and Askari, A. (1981).Biochim. Biophys. Acta 645, 54–58.

    Google Scholar 

  • Huang, W.-H., Kakar, S. S., and Askari, A. (1985).J. Biol. Chem. 260, 7356–7361.

    Google Scholar 

  • Huang, W.-H., Kakar, S. S., and Askari, A. (1986).Biochem. Int. 12, 521–528.

    Google Scholar 

  • Jensen, J., and Ottolenghi, P. (1976).Biochem. J. 159, 815–817.

    Google Scholar 

  • Jensen, J., and Ottolenghi, P. (1983).Biochim. Biophys. Acta 731, 282–289.

    Google Scholar 

  • Jensen, J., Norby, J. G., and Ottolenghi, P. (1984).J. Physiol. 346, 219–241.

    Google Scholar 

  • Jorgensen, P. L., and Andersen, J. P. (1986).Biochemistry 25, 2889–2897.

    Google Scholar 

  • Kakar, S. S., Huang, W.-H., and Askari, A. (1985).Biochem. Int. 11, 611–616.

    Google Scholar 

  • Kakar, S. S., Huang, W.-H., and Askari, A. (1987).J. Biol. Chem. 262, 42–45.

    Google Scholar 

  • Karlish, S. J. D., and Kempner, E. S., (1984).Biochim. Biophys. Acta 776, 288–298.

    Google Scholar 

  • Karlish, S. J. D., and Stein, W. D. (1982).Ann. N.Y. Acad. Sci. 402, 226–238.

    Google Scholar 

  • Kepner, G. R., and Macey, R. I. (1968).Biochim. Biophys. Acta 163, 188–203.

    Google Scholar 

  • Koepsell, H. (1978).J. Membr. Biol. 44, 85–102.

    Google Scholar 

  • Koepsell, H., Hulla, F. W., and Fritzsch, G. (1982).J. Biol. Chem. 257, 10733–10741.

    Google Scholar 

  • Koshland, D. E., Jr., Nemethy, G., and Filmer, D. (1966).Biochemistry 5, 365–385.

    Google Scholar 

  • Kyte, J. (1972).J. Biol. Chem. 247, 7642–7649.

    Google Scholar 

  • Kyte, J. (1975).J. Biol. Chem. 250, 7443–7449.

    Google Scholar 

  • Kyte, J. (1981).Nature (London)292, 201–204.

    Google Scholar 

  • Lazdunski, M. (1970).Curr. Top. Cell. Regul. 6, 267–310.

    Google Scholar 

  • Liang, S., and Winter, C. G. (1977).J. Biol. Chem. 252, 8278–8284.

    Google Scholar 

  • Moczydlowski, E. G., and Fortes, P. A. G. (1981).J. Biol. Chem. 256, 2346–2366.

    Google Scholar 

  • Mohraz, M., Rinder, C. A., and Smith, P. R. (1985). InThe Sodium Pump (Glynn, I. M., and Ellory, C., eds.), The Company of Biologists, Cambridge, pp. 45–49.

    Google Scholar 

  • Mohraz, M., Yee, M., and Smith, P. R. (1986).Ann. N.Y. Acad. Sci. 483, 131–139.

    Google Scholar 

  • Mohraz, M., Simpson, M. V., and Smith, P. R. (1987).J. Cell. Biol. in press.

  • Monod, J., Wyman, J., and Changeux, J.-P. (1965).J. Mol. Biol. 12, 88–118.

    Google Scholar 

  • Nakao, T., Nakao, M., Kano, I., and Sato, K. (1985). InThe Sodium Pump (Glynn, I. M., and Ellory, C., eds.), The Company of Biologists, Cambridge, pp. 57–61.

    Google Scholar 

  • Neet, K. E. (1981).Methods Enzymol. 64, 139–192.

    Google Scholar 

  • Neufeld, A. H., and Levy, H. M. (1969).J. Biol. Chem. 244, 6493–6497.

    Google Scholar 

  • Norby, J. G. (1985). InThe Sodium Pump (Glynn, I. M., and Ellory, C., eds.), The Company of Biologists, Cambridge, pp. 399–407.

    Google Scholar 

  • Norby, J. G., and Jensen, J. (1974).Ann. N.Y. Acad. Sci. 242, 158–167.

    Google Scholar 

  • Ottolenghi, P., and Ellory, J. C. (1983).J. Biol. Chem. 258, 14895–14907.

    Google Scholar 

  • Ottolenghi, P., and Jensen, J. (1983).Biochim. Biophys. Acta 727, 89–100.

    Google Scholar 

  • Ottolenghi, P., and Jensen, J. (1985). InThe Sodium Pump (Glynn, I. M., and Ellory, C., eds.), The Company of Biologists, Cambridge, pp. 219–227.

    Google Scholar 

  • Ottolenghi, P., Norby, J. G., and Jensen, J. (1986).Biochem. Biophys. Res. Commun. 135, 1008–1014.

    Google Scholar 

  • Ovchinnikov, Y. A., Demin, V. V., Barnakov, A. N., Kuzin, A. P., Lunev, A. V., Modyanov, N. N., and Dzhandzhugazyan, K. N. (1985).FEBS Lett. 190, 73–76.

    Google Scholar 

  • Patzelt-Wenczler, R., and Mertens, W. (1981).Eur. J. Biochem. 121, 197–202.

    Google Scholar 

  • Patzelt-Wenczler, R., and Schoner, W. (1981).Eur. J. Biochem. 114, 79–87.

    Google Scholar 

  • Periyasamy, S. M., Huang, W.-H., and Askari, A. (1983).J. Biol. Chem. 258, 9878–9885.

    Google Scholar 

  • Peters, W. H. M., Swartz, H. G. P., DePont, J. J. H. H., Schuurmans-Stekhoven, F. M. A. H., and Bonting, S. L. (1981).Nature (London)290, 338–339.

    Google Scholar 

  • Plesner, I. W. (1987).Biophys. J. 51, 69–78.

    Google Scholar 

  • Plesner, I. W., Plesner, L., Norby, J. G., and Klodos, I. (1981).Biochim. Biophys. Acta 643, 483–494.

    Google Scholar 

  • Post, R. L., Hegyvary, C., and Kume, S. (1972).J. Biol. Chem. 247, 6530–6540.

    Google Scholar 

  • Repke, K. R. H., and Schon, R. (1973).Acta Biol. Med. Ger. 31, K19-K30.

    Google Scholar 

  • Ricard, J., and Noat, G. (1984).J. Theor. Biol. 111, 737–753.

    Google Scholar 

  • Ricard, J., Mouttet, C., and Nari, J. (1974).Eur. J. Biochem. 41, 479–497.

    Google Scholar 

  • Robinson, J. D., and Flashner, M. S. (1979).Biochim. Biophys. Acta 549, 145–176.

    Google Scholar 

  • Robinson, J. D., Leach, C. A., Davis, R. L., and Robinson, L. J. (1986).Biochim. Biophys. Acta 872, 294–304.

    Google Scholar 

  • Sachs, J. R. (1981).J. Physiol. 316, 263–277.

    Google Scholar 

  • Schoner, W., Pauls, H., and Patzelt-Wenczler, R. (1977). InMyocardial Failure (Riecker, G., Weber, A., and Goodwin, J., eds.), Springer-Verlag, Berlin, pp. 104–119.

    Google Scholar 

  • Schuurmans Stekhoven, F. M. A. H., Swarts, H. G. P., DePont, J. J. H. H. M., and Bonting, S. L. (1981).Biochim. Biophys. Acta 732, 607–619.

    Google Scholar 

  • Schuurmans Stekhoven, F. M. A. H., Swarts, H. G. P., DePont, J. J. H. H. M., and Bonting, S. L. (1983).Biochim. Biophys. Acta 649, 533–540.

    Google Scholar 

  • Skou, J. C. (1985). InThe Sodium Pump (Glynn, I. M., and Ellory, C., eds.), The Company of Biologists, Cambridge, pp. 575–588.

    Google Scholar 

  • Skou, J. C., and Esmann, M. (1983).Biochim. Biophys. Acta 727, 101–107.

    Google Scholar 

  • Smith, R. L., Zinn, K., and Cantley, L. C. (1980).J. Biol. Chem. 255, 9852–9859.

    Google Scholar 

  • Stein, W. D., Lieb, W. R., Karlish, S. J. D., and Eilam, Y. (1973).Proc. Nat. Acad. Sci. USA 70, 275–278.

    Google Scholar 

  • Sweadner, K. J. (1977).Biochem. Biophys. Res. Commun. 78, 962–969.

    Google Scholar 

  • Vogel, F., Meyer, H. W., Grosse, R., and Repke, K. R. H. (1977).Biochim. Biophys. Acta 470, 497–502.

    Google Scholar 

  • Yamaguchi, M., and Tonomura, Y. (1980).J. Biochem. 88, 1377–1385.

    Google Scholar 

  • Zampighi, G., Simon, S. A., Kyte, J., and Kreman, M. (1986).Biochim. Biophys. Acta 854, 45–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Askari, A. (Na+ + K+)-ATPase: On the number of the ATP sites of the functional unit. J Bioenerg Biomembr 19, 359–374 (1987). https://doi.org/10.1007/BF00768539

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00768539

Key Words

Navigation