Journal of Wood Science

, Volume 48, Issue 2, pp 147–152 | Cite as

Studies on hypersaline-tolerant white-rot fungi L: screening of lignin-degrading fungi in hypersaline conditions

  • Xin Li
  • Ryuichiro Kondo
  • Kokki Sakai
Original Article


To search for marine fungi that have significant lignin-degrading ability in a hypersaline environment, eight strains of marine fungi were selected from 28 strains isolated from mushrooms and driftwood sampled from mangrove stands in Okinawa, Japan. We evaluated the decolorization ability, delignification ability, and biobleaching properties of the strains; then strain MG-60 was screened as a hypersaline-tolerant lignin-degrading fungus. We have summarized its growth, decolorization ability, and biobleaching properties at various sea salt concentrations. The strain has been estimated to belong to thePhlebia family.

Key words

White-rot fungi Decolorization Delignification Biobleaching Tolerance to sea salts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paice MG, Reid ID, Bourbonnais R, Archibald FS, Jurasek L (1993) Manganese peroxidase, produced byTrametes versicolor during pulp bleaching, demethylates and delignifies kraft pulp. Appl Environ Microbiol 59:260–265PubMedPubMedCentralGoogle Scholar
  2. 2.
    Katagiri N, Tsutsumi Y, Nisihida T (1995) Correlation of brightness with cumulative enzyme activity related to lignin biodegradation during biobleaching of kraft pulp by white rot fungi in the solid-state fermentation system. Appl Environ Microbiol 61:617–622PubMedPubMedCentralGoogle Scholar
  3. 3.
    Glenn JK, Gold MH (1983) Decolorization of several polymeric dyes by the lignin-degrading basidiomycetePhanerochaete chrysosporium. Appl Environ Microbiol 45:1741–1747PubMedPubMedCentralGoogle Scholar
  4. 4.
    Spadaro JT, Gold MH, Renganathan V (1992) Degradation of azo dyes by the lignin-degrading fungusPhanerochaete chrysosporium. Appl Environ Microbiol 58:2397–2401PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bumpus JA, Brock BJ (1988) Biodegradation of crystal violet by the white rot fungusPhanerochaete chrysosporium. Appl Environ Microbiol 54:1143–1150PubMedPubMedCentralGoogle Scholar
  6. 6.
    Rodríguez ER, Pickard MA, Vazquez-Duhalt R (1999) Industrial dye decolorization by laccases from ligninolytic fungi. Curr Microbiol 38:27–32CrossRefPubMedGoogle Scholar
  7. 7.
    Takada S, Nakamura M, Matsueda T, Kondo R, Sakai K (1996) Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by white rot fungiPhanerochaete sordida YK-624. Appl Environ Microbiol 62:4323–4328PubMedPubMedCentralGoogle Scholar
  8. 8.
    Arisoy M (1998) Biodegradation of chlorinated organic compound by white-rot fungi. Bull Environ Contam Toxicol 60:872–876CrossRefPubMedGoogle Scholar
  9. 9.
    Jiang JE (2000) Intrinsic metal binding capacity of kraft lignin. J Wood Chem Technol 20:133–145CrossRefGoogle Scholar
  10. 10.
    Tanaka H (1984) Studies on wet end chemistry in papermaking. I. An investigation on physicochemical properties of mill white water. Jpn TAPPI 38:645–667CrossRefGoogle Scholar
  11. 11.
    Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris HP (1998) Fungal life in the extremely hypersaline water of the Dead Sea: first records. Proc R Soc Lond B 265:1461–1465CrossRefGoogle Scholar
  12. 12.
    Cribb AB, Cribb JW (1955) Marine fungi from Queensland. I. Papers Univ Queensland Dep Bot 3:78–81Google Scholar
  13. 13.
    Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic, San Diego, p 690Google Scholar
  14. 14.
    Kohlmeyer J, Kohlmeyer E (1971) Marine fungi from tropical America and Africa. Mycologia 63:831–861CrossRefPubMedGoogle Scholar
  15. 15.
    Rohrann S, Molitoris HP (1992) Screening for wood-degrading enzymes in marine fungi. Can J Bot 70:2116–2123CrossRefGoogle Scholar
  16. 16.
    Kobayashi H, Namikoshi M, Yoshimoto T, Yokochi T (1996) A screening method for antimitotic and antifungal substances using conidia ofPyricularia oryzae. modification and application to tropical marine fungi. J Antibiot 49:873–879CrossRefPubMedGoogle Scholar
  17. 17.
    Grasso S, Bruni V, Maio G (1997) Marine fungi in Terra Nova Bay (Ross Sea, Antarctica). Microbiologia 20:371–376Google Scholar
  18. 18.
    Abd-Elaah GA (1998) The occurrence of fungi along the Red Sea coast and variability among isolates ofFusarium as revealed by isozyme analysis. J Basic Microbiol 38:303–311CrossRefPubMedGoogle Scholar
  19. 19.
    Hirai H, Kondo R, Sakai K (1994) Screening of lignin-degrading fungi and their ligninolytic enzyme activities during biological bleaching of kraft pulp. Mokuzai Gakkaishi 40:980–986Google Scholar
  20. 20.
    Tien M, Kirk T (1988) Lignin peroxidase ofPhanerochaete chrysosporium. Methods Enzymol 161:238–249CrossRefGoogle Scholar
  21. 21.
    Pointing SB, Vrijmoed LLP, Jones EBG (1998) A qualitative assessment of lignocelluloses degrading enzyme activity in marine fungi. Bot Mar 41:293–298CrossRefGoogle Scholar
  22. 22.
    Raghukumar C, Raghukumar S, Chinaraj A, Chandramohan D, D'Souza TM, Reddy CA (1994) Laccase and other lignocellulose modifying enzymes of marine fungi isolated from the coast of India. Bot Mar 35:512–527Google Scholar
  23. 23.
    Jones EBG (1971) The ecology and rotting ability of marine fungi. In: Jones EBG, Eltringham SK (eds) Marine borers, fungi and fouling organisms of wood: proceedings of the OECD workshop organized by the committee investigating the preservaton of wood in marine enironment, March 27 to April 3, 1968. OECD, ParisGoogle Scholar
  24. 24.
    Leightley LE (1980) Wood decay activities of marine fungi. Bot Mar 23:387–395Google Scholar
  25. 25.
    Mouzouras R (1986) Patterns of timber decay caused by marine fungi. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, pp 341–353Google Scholar
  26. 26.
    Suhara H, Kondo R, Sakai K (2000) Identification of valuable white rot fungi by 18SrDNA sequences. In: Proceedings of the 45th Lignin Symposium, Matsuyama, pp 187–188Google Scholar

Copyright information

© The Japan Wood Research Society 2002

Authors and Affiliations

  1. 1.Laboratory of Forest Chemistry and Biochemistry, Graduate School of Bioresource and Bioenvironmental SciencesKyushu UniversityFukuokaJapan

Personalised recommendations